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Why should we care about genome similarity?
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Another example

Genomic surveillance elucidates
Ebola virus origin and transmission
during the 2014 outbreak
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Hierarchical clustering algorithms

e The only input of hierarchical clustering algorithms is a distance matrix
e This includes UPGMA and neighbor-joining
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BACKGROUND - IS IT THAT SIMPLE?



Sequencing by synthesis

[By Abizar Lakdawalla, CC BY-SA 3.0, https://en.wikipedia.org/wiki/File:

Sequencing_by_synthesis_Reversible_terminators.png]
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Sequencing, read-sets

e Product of sequencing is not a long sequence, but short substrings

called reads
e Reads have length of 10s to 100s of symbols
e Sequence AGGCTGGA is represented by set {AGGC, TGGA, GCT}.
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e Assembly does not produce a single putative sequence, but several

contigs

e Process of scaffolding and gap filling requires some additional wet-lab
work

e Contigs are approximate substrings with unknown locations and

orientation
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Our approach - skip assembly.

e The goal is to build a dendrogram directly from the read sets

e Assumption: no reference sequence known




Alignment-free approaches

e Originally designed to avoid alignment step for genome comparison
e Genome broken into k-mers
e Some approaches work with read data

Comin and Schimd BMC Bioinformatics 2014, 15(Suppl 951

hitp://www biomedcentral.comy/1471-2105/15/59/51
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DISTANCE FUNCTION DESIGN



Monge-Elkan distance

e Our approach is based on the Monge-Elkan distance known from

databases
e For each read from a read set, we find the least distant read in the
second read set
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e Then we average over the read pairs

Estimating Sequence Similarity from Read Sets
for Clustering Sequencing Data
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Distance scale and symmetry

e QOur measure should be symmetric
e The Monge-Elkan distance has upper bound [

e Bring distance to proper scale
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Margin gaps

e Special treatment of leading and trailing gaps

e They may be caused by random positions of the reads
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e Modification to edit distance
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IMPROVEMENTS



Too slow ? - sample

e Coverage c around 2 provides results that are good enough.

e For high coverage data, downsample to ¢ = 2.

Published: 04 August 2018
Estimating sequence similarity from read sets for
clustering next-generation sequencing data

Petr Ryfavy & & Filip Zelezny

Data Mining and Knowledge Discovery 33, 1-23 (2019) ‘ Cite this article

734 Accesses ‘ 3 Citations ‘ 2 Altmetric ‘ Metrics
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Too slow 7 - use embedding

e We do not need an exact minimum in the Monge-Elkan distance.

We use embedding to identify good candidates.

e g-gram profile is vector of counts of all possible g-grams, i.e. strings
from 9.

e g-gram distance of two strings is the Manhattan distance of their
g-gram profiles.

Inspiration by BLAST and dictionary search, ¢ = 3.

We evaluate edit distance only on reads minimizing the g-gram
distance.

e g-gram distance is LB on edit distance.
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THEORETICAL ANALYSES




Works well - why? (unpublished)

e If we use a read bag and a sequence, a Monge-Elkan-alike distance

serves as a lower-bound
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Practical Applicability - p-value

e We developed a p-value algorithm for the Monge-Elkan distance

e Based on generating polynomials, combinatorics, and improved with
FFT

An Algorithm to Calculate the p-value of the
Monge-Elkan Distance *

Petr Rysavyl0000-0002—6597—6616] 44 Filip Zeleznyl0000—0001-8780-3376]

Department of Computer Science,
Faculty of Electrical Enginecring, Czech Technical University in Prague,
Prague, Czech Republic
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USING CONTIG-SETS




Our approach - skip assembly.

e Do not skip the assembly; do only the easy parts.
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1) Estimating overlaps for contig pairs

e Consider two contigs a and 3 and assume they overlap in the optimal
alignment

e Select overlap that minimizes the post-normalized edit distance

i dist(av, B)
dist(a, f) = ———————. 1
maxc{jal. |3]) &
e Heuristic approach based on modification of Smith-Waterman
algorithm
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2) Estimating overlaps for contig sets

e For one contig, we have overlaps with the other contig set

e Select non-overlapping regions that maximize the total value
(post-normalized edit distance)

e Reduction to weighted interval scheduling problem

a

A
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3) Combining the Results

e Sum distances of overlap pairs

d(Ca,Cp) = > dist(c, d).

(¢,d)€overlap(C4,CR)

e The sum does not capture contig size w.r.t. genome size

A




3) Combining the Results

e Normalize
e Divide by maximum possible distance of all overlaps ...

e ... and multiply by genome maximum distance

Z(c,d)EoverIap(CA,CB) dISt(C’ d) . lmax{|RA|, |RB|}

d(CA7 CB) =
Z(c,d)eoverlap(CA,CB) maX{|c|, |d|} &

e Finally, make the resulting measure symmetric ...

A
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COMBINATION OF THE MEASURES




Combine the Read-Based and Contig-Based Methods

e Requires dealing with many read/contig combination pairs
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Efficiency Improvements

e ldeally, the algorithm should calculate an alignment only around the
optimal alignment path

S
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EXPERIMENTAL RESULTS




Experimental setup

e Two real-world and three artificial datasets
e Original DNA sequences used as a reference (if available)
e Two clustering algorithms (Neighbor-joining and UPGMA)

e Comparison using 5 common de novo assemblers (ABySS, edena,
SSAKE, SPADes, velvet)

e Comparison with alignment-free measures (8 d-type statistics, Mash,
co-Phylog)
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Measured characteristics:

time (assembly time, distance matrix time, clustering time)

e Pearson's correlation coefficient measuring the similarity of the
distance matrix to the reference one

Fowlkes-Mallows index measuring similarity of the clusterings

Averaging over ¢ and [ values.
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Results

e Pearson’s correlation between distance matrices is close to one

Table 4 Runtime, Pearson’s correlation cocfficient between distance matrices and Fowlkes-Mallows index for k = 4 and k = 8. The ‘reference’ method
calculates distances from the original sequences. We show only assembly algorithm that gave the highest correlation, the best d-type method, and the

better algorithm of pairs MES/MESS, MESSG/MESSGM, and MESSGa/MESSGMa.

Dataset method finished  assem.  distances  UPGMA NI oo | UPCMA  UPGMA R RJ
reference 112/112 0 3,091 459 325 1 1 1 1
0 337 1.08 3.25 67 319 658 319
Influenza
Mash 112/112 1.53 859 |.679 AT76 575 438 61
dj 111/112 4.86 336 |.837 378 712 403 898
SPAdes 43/112 033 107 |.928 965 752 94 781
reference 112/112 1 1 1
655 846924
Various
Mash 112/112 4.88 11.26 498 .408 267 428 326
dj 109/112 4.84 1932 | 442 378 189 453 317
SPAdes 34/112 177,821 021 079 |.942 698 91 961 949
reference 9/9 1,759,470 44.44 1 1 1 1
max(|Ral,[Rp)  9/9 18,913 14.00 553 368 724 .828
Hepatitis
Mash 9/9 0 3,788 23.00  141.33 |.967 964 966 1 018
di 9/9 0 26,301 4711 397.00 |.973 984 96 187
Velvet 9/9 17774 2,398,724 1.00 367 |.782 803 846 964 84T
reference 1/1 0 653,900 7.00 4.00 1 1 1 1 1
max(|Ral, |R, 1/1 0 1,247 1.00 1.00 | .331 .64 404 613 298
Chromosomes
0 261 307 599 382
0 1,768 328 805 303

a3
SSAKEa 1/1 46,853 55,131

1.00

1.00

528

A7

.805

.255
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Results

e Exact evaluation of the Monge-Elkan distance is too slow for real-world

Table 4 Runtime, Pearson’s correlation coefficient between distance matrices and Fowlkes-Mallows index for k = 4 and k = 8. The ‘reference’ method
calculates distances from the original sequences. We show only assembly algorithm that gave the highest correlation, the best d-type method, and the
better algorithm of pairs MES/MESS, MESSG/MESSGM, and MESSGq/MESSGMq.

Dataset method finished  assem. | distances | UPGMA NI o, UPCMA  UPGMA  RJ  RJ
reference 112/112 0 3,991 4.59 3.25 1 1 1 1 1
Ryl.|Rp 0 337 1.08 325 801 67 319 658 319
1SEMESSG 3 3 . E! 3 3 3
[Bfiuenza) DistMesscq 112/112 0 49,260 0.09 053 971 1999 992 999 985
Mash 112/112 0 17 1.53 859 679 AT76 575 438 61
d; 111/112 0 352 4.86 3.36 837 378 712 403 .898
SPAdes 43/112 12,230 4,644 033 107 928 965 752 94 781
reference 112/112 0 59,602 5.21 3.40 1 1 1 1 1
max(|R4l.|R 112/112 0 596 1.95 235 907 671 655 846924
et Distwiessc 70/112 0 1,575,721 029 064 933 621 884 932 .93
Distwessomq ~ 110/112 0 570,361 0.29 079 927 657 a7 842 972
Mash 112/112 0 238 4.88 11.26 498 408 267 428 326
d; 109/112 0 689 4.84 19.32 442 378 189 453 317
SPAdes 34/112 18675 | 177,821 021 079 942 698 91 961 949
reference 9/9 0 1759470 | 2500 4444 1 1 1 1 1
max(|Ral, |[Rp)  9/9 0 18,913 7.11 14.00 181 553 368 724 828
s ISLMESSGM 5 3 3 3 B B B B
Hepatitis Distwiesscma 9/9 0 697,464 1.56 5.78 9 915 947 1944
Mash 9/9 0 3,788 23.00  141.33 967 964 966 1 018
dg 9/9 0 26,301 47.11 397.00 973 984 .96 1 87
Velvet 9/9 17,774 | 2,398,724 1.00 367 782 803 846 964 847
reference 1/1 0 653,000 7.00 4.00 1 1 1 1 1
0 1,247 1.00 100 . .64
Cliromesomnez) Distwiesscqa 11 0 178,840 1.00 1.00  .841 673 301 9 262
Mash 11 0 261 1.00 400 .33 588 307 599382
d; 1/1 0 1,768 0.00 2.00 302 503 328 805  .303
SSAKE« /1 46853 | 55131 1.00 100 652 528 17 805 255 35




Results

e Embedding and scaling puts runtime between assembly and
alignment-free approaches

Table 1 Runtime on “E. coli” dataset. Assembly time (without distance matrix calculation
on the same dataset is

(Velvet).

Method Time (in seconds)
11,073

Distmessc(M)qa




Results

e Qur approach requires lower coverage than assembly

Influenza Various

B L T

04} / 1

0.1 1 10 100 U'%)l 1 10 100
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Figure 2: Plot of average Pearson’s correlation coefficient for several choices of coverage values.
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Results

Various

Influenza.

e QOur approach works better for short reads than assembly
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Figure 3: Plot of average Pearso
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Conclusion

e We have seen three methods for estimating sequence similarity from
read/contig sets or both

e Only single approximation step

e Adapts advantages of both alignment-free approaches and alignment
similarity

e Due to low coverage requirements and small read length requirements,

possible applications might include MiSeq, or as part of supertree
methods

e Applicable to other similarity-based learning methods, as k-NNs
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CIRCULAR RNAs
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Circular RNA-interaction Graph

e In a second project, we focused on annotation of circular RNAs with

annotation terms (as gene ontology terms)

Today, the function of many circRNAs remains unknown

An automatic tool to annotate circRNAs needed

Annotation of miRNAs and mRNAs available

Interaction graph is known (miRNA silencing and circRNA sponging)

mRNA

miRNA

circRNA
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ANNOTATION ALGORITHM




Use the number of paths from the circRNA

e Problems are independent for different circRNAs and different terms

e Guilt by association principle
e We can count the number of paths from the circRNA that end in a
miRNA/mRNA annotated with the term

mRNA
miRNA

circRNA



... in matrix form

G . gt 4+ ATRGe . Gm
mRNA
miRNA

circRNA



The statistic is not comparable among terms

More frequent terms have a higher statistic

We can solve this bias by using the p-value

Calculate the probability that we get a higher statistic for the same
size term by chance

Traditionally solved by generating random subsets and calculating the
statistic (Barnard’s Monte-Carlo sampling)
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How to calculate the p-value

e Using a generating polynomial

e Imagine tossing a dice with sides (1,2,3,3,3,4), then the generating
polynomial is
z+ 22+ 323 + 4

e Tossing this dice twice gives

(m+x2+3x3+x4)2 =22 4 223 + T2* + 82° + 112° + 627 + 28
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The complete pipeline

e —
TarBase

_—
miRecords

multiMiR

Pick a circRNA ¢
(iteratively)

org.Hs.eg.db
e —

Quick GO

e —
miRTarBase

Pick an annotation term
(iteratively)

e —
CircInteractome

Input data

Interaction graph
AT ghie

circRNA

miRNA

Function (annotation)

2 \

Expected value Statistic p-value
E(s(c,9)) s(e.g) Generating polynomials
83 83 B3
Normalized statistic Adjusted p-value Aeraletiem
{ B } { FWER/FDR
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RESULTS




sample output - annotation of hsa_circ_0000228

NP_SOMP@UTATION Hpﬁ‘
HP_NEOPLASM_OF. @Envous,svsTsM

GOBP_MIRNA_LOADING_ONTO_RISC_INJLVED_IN_GENE_SILENCING_BY_MIRNA

GoBP_SMALL_RNA (OADING_ONTO_RISC cose_Rna (@ERrEREnce
HP_INCREASED_§ERUM_SEROTONIN GOCC_RNAI_EFEE)TOR_COMPLEX
HP_NEOPLA.HISTOLOGV GOCC_RISC_L@ADING_COMPLEX
HP_PANCREATIC_ERPOCRINE_TUMOR
HP»GENH.EOPLASM GOBP_NEGATIVE_REGULATION_OF. _@_CYCLE_G|_S_PNASE_TRANSITION
HP,NEOPLASM,OU@\ToumNARijAa

GOBF‘_NEGATWE_REGU_CELL_CVCLE_FROCESS
HP_SOFT. T‘_SARCDMA
HP_FEMALE_REPRODU@_SVSTEM_NEOPLASM

HP_RENAL_(@_CARC|NQMA HP_NEOPLASM_OF_@_LARGE_INTESTINE

GOBP_REGuLATIoN_oF,cELI@Encu_s,PmsE_mANslnoN
HP_THIN_UF"_VERMILION
HP_URINARY‘OT_NEOPLASM
HP_ABNORMAL_US»MORPHOLOGV HP_THIN_\
GOCC_TRANSCR\PTIO@PRESSOR»COMPLEX

.N_BORDER
HPﬁABNORMALITViRﬁLIPﬁVERMILLION
GOBP_M@TOPHAGV
HP_TRIM@AR»FACE

GOMF_UBIQUITIN_LIK

GOEP_PROTEIN_LO@VION_TO_NUCLEUS
EIN_LIGASE_BINDING  GOBP_REGULATION_OF_GLYCGPBOTEIN_METABOLIC_PROCESS
GOMF_NISTONE_@WLASE_BINDING
GOBP_NEGATIVE_REGULA @ - TRANSFERASE_ACTIVITY ~ GOCC_UBIQUI \SE_COMPLEX
GOMF»SINGLE_ST@ED»RNA_EINDING
GOMF| DING
GOBP_MUSCLE. @ROLIFERATION eoep_nseuumoN_o@METAsouc_PRocEss
GOMF_CORE_PROMOTER_SEQUBNCE_SPECIFIC_DNA_BINDING

GOEP_REGULATION»OF_RE@SE_TO_OXIDATIVE»STRESS
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sample output - influence of interacting RNAs
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Evaluation

faster than the Monte-Carlo sampling

Term frequency
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CONCLUSION - WORK IN PROGRESS




Conclusion - Work in Progress

e The edges can be weighted by co-expression
e The vertices can be weighted by the log-fold changes

e This way, we incorporate the expression matrix

Another problem:

e The tool can be used to mine circRNA-disease associations
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