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Abstract—We introduce a novel method for prediction of
DNA-binding propensity of proteins which extends our recently
introduced ball-histogram method (Szabóová et al. 2012).
Unlike the original ball-histogram method, it allows handling
of continuous properties of protein regions. In experiments on
four datasets of proteins, we show that the method improves
upon the original ball-histogram method as well as other
existing methods in terms of predictive accuracy.
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I. INTRODUCTION

The process of protein-DNA interaction has been an im-
portant subject of recent bioinformatics research, however, it
has not been completely understood yet. DNA-binding pro-
teins have a vital role in the biological processing of genetic
information like DNA transcription, replication, maintenance
and the regulation of gene expression. Several computational
approaches have recently been proposed for the prediction
of DNA-binding function from protein structure.

Some of the recent approaches ([1], [2], [3], [4], [5]) rely
exclusively on protein structure data (whether sequential or
spatial). Szilágyi and Skolnick [6] created a method based
on a logistic regression classifier with ten variables (physic-
ochemical properties) to predict from sequence and low-
resolution structure of a protein whether it is DNA-binding.
To our knowledge, the predictive accuracy achieved by the
lastly mentioned strategy [6] was only improved by incor-
porating an additional source of background knowledge,
in particular, information on evolutionarily conserved do-
mains. Nimrod et al. [7] presented a random forest classifier
for identifying DNA-binding proteins among proteins with
known 3D structures using detected clusters of evolutionarily
conserved regions on the surface of proteins.

It is nevertheless important to continue improving meth-
ods that do not exploit evolutionary information. Such
methods are valuable mainly due to their ability to predict
DNA-binding propensity for engineered proteins for which
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evolutionary information is not available. Engineered pro-
teins are highly significant for example in emerging gene-
therapy technologies [8]. In [9] we were concerned with
prediction of DNA-binding propensity from spatial structure
information without using evolutionary information. To this
end, we developed the ball-histogram method, which im-
proved on most of the mentioned state-of-the-art approaches.
A somewhat limiting property of the original ball-histogram
method was that it could only work with discrete properties
of proteins’ regions such as numbers of amino acids of given
types. In this paper we improve the ball-histogram method
by developing an approach for dealing with continuous
properties of proteins’ regions which improves predictive
accuracy w.r.t. the original ball-histogram method. The pro-
grams and data described in this paper can be downloaded
from http://ida.felk.cvut.cz/users/kuzelka/BIBM2012.zip.

II. BALL-HISTOGRAM METHOD

In this section we describe the original ball-histogram
method which has already been applied to prediction of
DNA-binding propensity of proteins in [9]. Originally, the
motivation for the method was the observation that dis-
tributions of certain types of amino acids differed signif-
icantly between DNA-binding and non-DNA-binding pro-
teins. This suggested that information about distributions of
some amino acids in local regions of proteins could have
been used to construct predictive models able to classify
proteins as binding or non-binding given their spatial struc-
ture. We developed an approach which was able to capture
fine differences between the distributions. It consisted of
four main parts. First, so-called templates were found. In
the second step ball histograms were constructed for all
proteins in a training set. Third, a transformation method
was used to convert these histograms to a form usable by
standard machine learning algorithms. Finally, a random
forest classifier was learned on this transformed dataset and
then it was used for classification. In the rest of this section
we describe this method in detail.

A template is a list of some Boolean amino acid prop-
erties. A bounding sphere of a protein structure is a sphere
with center located in the geometric center of the protein



structure and with radius equal to the distance from the
center to the farthest amino acid of the protein plus the
diameter of the sampling ball which is a parameter of the
method. We say that an amino acid falls within a sampling
ball if the alpha-carbon of that amino acid is contained in
the sampling ball in the geometric sense.

A ball histogram for a protein P is computed as follows.
First, the geometric center C of all amino acids of a given
protein P is computed (each amino acid is represented by
coordinates of its α-carbon). The radius RS of the sampling
sphere for the protein structure P is then computed as:

RS = max
Res∈P

(distance(Res,C)) +R,

where R is a given sampling-ball radius. After that the
method collects a pre-defined number of samples containing
at least one amino acid from the bounding sphere. For each
sampling ball the algorithm counts the number of amino
acids in it, which comply with the particular properties con-
tained in a given template and increments a corresponding
bin in the histogram. In the end, the histogram is normalized.

III. EXTENDING BALL HISTOGRAMS WITH
CONTINUOUS VARIABLES

We start by explaining why the existing ball-histogram
approach is not suitable for work with continuous attributes.
Then we introduce so-called polynomial aggregation fea-
tures and after that we show how they can be used in a
ball-histogram-based approach to predictive classification.

A drawback of the original ball-histogram method is that it
is ill-suited for work with continuous variables. For example,
it is possible to model the distributions of Arginines and
Lysines using the ball-histogram method. However, if we
tried to model distributions of e.g. hydropathy and volume
of amino acids in a given protein structure in the very
same way, we would face serious difficulties stemming from
combinatorial explosion of the number of histograms’ bins
- attributes. We use multivariate polynomial aggregation - a
strategy that we have recently introduced in the context of
statistical relational learning.

A monomial feature M is a pair (τ, (d1, . . . , dk)) where
τ is a template with k properties and d1, . . . , dk ∈ N.
Degree of M is deg(M) =

∑k
i=1 di. Given a sampling

ball B placed on a protein structure P , we define the
value of a monomial feature M = (τ, (d1, . . . , dk)) as
M(B) = τd1

1 · τd2
2 · . . . · τdk

k where τi is the average value of
the i-th property of template τ averaged over the amino acids
contained in the sampling ball B. Sometimes, we will use a
more convenient notation for monomial features motivated
by this definition of value:

(τ = (τ1, . . . , τk), (d1, . . . , dk)) ≡def τd1
1 · τd2

2 · . . . · τdk

k

Example 1: Let us have a template τ =
[hydropathy, volume], a monomial feature
M = hydropathy ·volume2 and a sampling ball containing

two Leucines (hydropathy = 3.8, volume = 124) and one
Arginine (hydropathy = −4.5, volume = 148). Then

M(B) =
2 · 3.8− 4.5

3
·
(
2 · 124 + 148

3

)2

≈ 1.8 · 104

A multivariate polynomial feature is an expression of
the form N = α1M1 + α2M2 + . . . + αkMk where
M1, . . . ,Mk are monomial features and α1, . . . , αk ∈ R
(formally expressed as a pair of two ordered sets - one of
monomials and one of the respective coefficients). Value of
a polynomial feature N = α1M1 + . . . + αkMk w.r.t to a
sampling ball B placed on a protein structure P is defined
as N(B) = α1M1(B) + α2M2(B) + . . .+ αkMk(B).
Degree of a polynomial aggregation feature P is maximum
among the degrees of its monomials.

Now, we extend the definitions of values of monomial
and polynomial features for protein structures. Given a
polynomial aggregation feature N and a sampling-ball radius
R, we define the value N(P ) of a polynomial feature N
w.r.t. a protein structure P as:

N(P ) =

∫
P̂
N(B)dB∫
P̂
dB

(1)

where P̂ is the set of all sampling balls with radius R which
contain at least one amino acid of the protein structure
P . The integral

∫
P̂
dB in the denominator is used as a

normalization constant. Intuitively, the integral computes the
average value of a polynomial feature N over balls located
on a given protein structure.

It can be seen quite easily that polynomial aggregation
features on protein structures share convenient properties
with the discrete ball histograms. They are invariant to
rotation and translation of the protein structures which is
important for predictive classification tasks. Intuitively, a
monomial feature M = τi corresponds to the average value
of property τi (in sampling balls of a given radius) over
a given protein structure. A monomial feature M = τ2i
captures the dispersion of the values of property τi over
a given protein structure. Indeed, let us have two proteins
A and B and a monomial feature M = charge2 and
let us assume that A and B are composed of the same
number of amino acids and that they contain the same
number of positively charged amino acids and no negatively
charged amino acids. Finally, let us also assume that the
positively charged amino acids are distributed more or less
uniformly over the protein structure A but are concentrated
in a small region of the protein structure B. Then it is not
hard to see that for the values M(A) and M(B) it should
hold M(A) ≤ M(B). Analogically, a monomial feature
M = τi ·τj corresponds to agreement of values of properties
τi and τj over a given protein structure but the covariance of
these values is better captured by the following expression
involving monomial features: M1(P ) − M2(P ) · M3(P )



where M1 = τi · τj , M2 = τi and M3 = τj . Note that
this expression is not a polynomial aggregation feature but
only an expression composed of polynomial (monomial)
aggregation features. This can be seen when we expand
M1(P ), M2(P ) and M3(P ) and obtain

M1(P )−M2(P )M3(P ) =

∫
P̂

τi·τjdB∫
P̂

dB
−

∫
P̂

τidB∫
P̂

dB
·
∫
P̂

τjdB∫
P̂

dB

which is not a value of a polynomial aggregation feature.
However, it can be easily constructed from some polynomial
aggregation features.

Values of polynomial aggregation features can be further
decomposed into so called k-values computed only from
balls containing exactly k amino acids. Given a polynomial
feature N and a positive integer k, the k-value of N w.r.t.
a protein P is given as

N(P |k) =

∫
P̂k

N(B)dB∫
P̂k

dB

where P̂k is the set of all sampling balls which contain
exactly k amino acids. The value of a polynomial feature
can then be expressed using k-values as

N(P ) =
∑
i

βi ·N(P |i)

where βi =
∫
P̂i

dB/
∫
P̂
dB.

When using polynomial features for construction of at-
tributes for machine learning, we can rely solely on the k-
values and the few proportions and let the machine learning
algorithms compute the values of monomial or polynomial
aggregation features from these values if needed.

Polynomial aggregation features can be used for predictive
classification in a way completely analogical to discrete ball
histograms. Given a template τ , sampling-ball radius R, a
maximum degree dmax and a protein structure, we construct
all monomials containing the continuous variables from τ
and having degree at most dmax. After that we construct the
attribute-table. The rows of this table correspond to examples
and the columns (attributes) correspond to k-values of the
constructed monomial features. There is an attribute for
every k-value such that there is at least one protein structure
in the dataset such that it contains a set of k amino acids
which fit into a ball of radius R.

The integrals used in definitions of values (or k-values)
of monomial aggregation features are difficult to evaluate
precisely therefore we use a Monte-Carlo-based approach
similar to the case of discrete ball histograms. The set of k-
values of monomial aggregation features for a protein P is
computed as follows. First, a bounding sphere is found for
the protein structure (with geometric center located in the
geometric center of the protein structure and with radius
RS = maxRes∈P (distance(Res,C)) + R, where R is
a specified sampling-ball radius). After that the method

collects a pre-defined number of samples containing at
least one amino acid from the bounding sphere. For each
sampling ball B the algorithm computes kB-values (where
kB is the number of amino acids contained in B) of all
monomial features complying with a given template and
with a given maximum degree and stores them. In the end,
the collected k-values of sampling balls are averaged to
produce approximate k-values for the protein structure P .

After the attribute-table is constructed, it can be used
to train an attribute-value classifier such as random forest
or support vector machine which can be then used for
prediction on unseen proteins.

IV. EXPERIMENTS

We used two datasets of DNA-binding proteins (PD138,
UD54) and two datasets of non-DNA-binding proteins
(NB110, NB843) in our experiments. The dataset PD138
was created using the Nucleic Acid Database (NDB) by
[6]. It contains DNA-binding proteins in complex with DNA
with a maximum pairwise sequence identity of 35% between
any two sequences. We discard the information about DNA
for the purpose of our experiments. However, both proteins
and DNA can alter their conformation during the process
of binding. This conformational change can involve small
changes in side-chain location, and also local refolding.
Therefore it is important to assess any method for prediction
of DNA-binding function also on DNA-binding proteins in
unbound conformation. For this, we used the dataset UD54
of 54 DNA-binding proteins in unbound conformation. This
dataset was also obtained from [6]. We used two datasets
of proteins which do not bind to DNA: NB110 and NB843.
The former dataset was created by Ahmad and Sarai [4]
from an earlier dataset of Rost and Sandler [10] by removing
proteins related to DNA-binding from it. The latter dataset
was created by Nimrod et al. [7] by adding 733 non-DNA-
binding proteins to the dataset NB110 in order to make the
ratio of DNA-binding proteins more realistic.

We performed predictive experiments with the four com-
binations of datasets. We used monomial aggregation fea-
tures with maximum degree 3 and the following basic
chemical properties of amino acids: charge, Van der Waals
volume, hydropathy index, isoelectric point (pI), dissociation
constants pK1 and pK2 and the following three proper-
ties related to DNA-binding derived by Sathyapriya et al.
[11], base-contact propensity, sugar-contact propensity and
phosphate-contact propensity. We trained random forest clas-
sifiers using only the attributes having non-zero information
gain-ratio on training set. When performing cross-validation,
this attribute selection was performed separately on the
respective training sets induced by cross-validation so that no
information could leak from a training set to a testing set. We
compared the continuous ball-histogram method presented
in this paper with the original discrete ball-histogram method
and with the method of Szilágyi and Skolnick [6], which



Continuous ball histograms Discrete ball histograms [9] Szilágyi et al. [6]

Accuracy AUC Accuracy AUC Accuracy AUC

PD138/NB110 0.89 0.95 0.87 0.94 0.81 0.92

PD138/NB843 0.89 0.86 0.88 0.87 0.87 0.84

UD54/NB110 0.87 0.90 0.81 0.89 0.82 0.89

UD54/NB843 0.95 0.83 0.94 0.81 0.94 0.78

Table I
EXPERIMENTAL RESULTS ESTIMATED BY 10-FOLD CROSS-VALIDATION.

we reimplemented. The estimated accuracies and AUCs
are shown in Table I. The new continuous ball-histogram
method performed best in terms of accuracy in all cases
and in terms of AUC in all but one case where the discrete
ball-histogram method performed best. We also tested the
original ball-histogram method with random forest classifiers
enriched with attribute-selection but it did not improve
performance.

In order to see whether the ball-histogram method, which
uses only structural information, could come close to the
results of methods which exploit also information about
evolutionary conservation of regions on protein surfaces,
we compared our results with the results of Nimrod et al.
[7]. The AUC 0.96 and accuracy 0.90 reported in [7] for
the datasets PD138 and NB110 differs only slightly (by
0.01) from our best results. The AUC 0.90 obtained for the
datasets PD138 and NB843 differs by 0.04 from our best
results. These results are encouraging given how important
evolutionary information turned out to be according to
experiments from [7]. When removing evolutionary infor-
mation, Nimrod et al.’s misclassification error on the dataset
PD138/NB110 increased by 0.035 which corresponds to
lower predictive accuracy than obtained by our method.

V. CONCLUSIONS

We have extended our recently introduced ball histogram
method by incorporation of polynomial aggregation fea-
tures which are able to capture distributions of continuous
properties of proteins’ regions. The method achieved higher
predictive accuracies than the original ball-histogram method
as well as an existing state-of-the-art method. There are
interesting future research directions regarding our novel
approach. For example, it would be interesting to explore
the possibility to use more chemical descriptors of amino
acids or protein-regions.
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