
Learning to detect network intrusion from a few

labeled events and background tra�c

Gustav Šourek1, Ondřej Kuželka2, and Filip Železný1

1 CTU Prague, Czech Republic
{souregus,zelezny}@fel.cvut.cz

2 Cardi↵ University, UK
kuzelkao@cardiff.ac.uk

Abstract. Intrusion detection systems (IDS) analyse network tra�c
data with the goal to reveal malicious activities and incidents. A general
problem with learning within this domain is a lack of relevant ground
truth data, i.e. real attacks, capturing malicious behaviors in their full
variety. Most of existing solutions thus, up to a certain level, rely on rules
designed by network domain experts. Although there are advantages to
the use of rules, they lack the basic ability of adapting to tra�c data.
As a result, we propose an ensemble tree bagging classifier, capable of
learning from an extremely small number of true attack representatives,
and demonstrate that, incorporating a general background tra�c, we are
able to generalize from those few representatives to achieve competitive
results to the expert designed rules used in existing IDS Camnep.

Keywords: Intrusion Detection, Random Forests, NetFlow, Camnep

1 Introduction

Intrusion detection systems analyse network tra�c data with the goal to reveal
malicious activities and incidents. In this paper we refer to an existing solution
for intrusion detection, a multistage collective network behavior analysis system
called Camnep [22]. The strategy of Camnep is to monitor high volume tra�c
networks for incidents, based on statistical information aggregated from pub-
licly accessible parts of connections, i.e network flows or NetFlows (Section 3),
utilizing variety of techniques from rules to statistical modeling. To assess mali-
ciousness of incidents the system needs to extract higher-level information from
lower-level data by constructing so called events from the individual NetFlows.
Aggregating NetFlows to meaningful entities is an open problem and existing
solutions rely mostly on standards and handmade rules designed by domain
experts.

The goal of this paper is to provide adaptive machine learning model, capable
to generalize from an extremely small number of available true attack represen-
tatives, with accuracy close to the expert designed process presented in Camnep.
To that aim, we first introduce a fast scalable heuristic procedure for the extrac-
tion of generic events from NetFlow tra�c (Section 4). Second, we propose an

enhanced Random-Forest-based learning model (Section 5) utilizing the small
number of available ground truth samples of particular incident types, with the
help of a large number of samples generated from background tra�c by the
heuristic procedure. The performance of the learned model to identify intrusions
is evaluated against Camnep on the same tra�c data, and a correspondence of
the two methods is analyzed (Section 6).

2 Related work

The amount of network generated data and progress in the area of machine learn-
ing suggest for development of automatic and adaptive solutions to address the
intrusion detection problem, and there has been a wide variety of machine learn-
ing approaches proposed to tackle IDS issues [28]. Related works utilize decision
trees to learn explicit knowledge [15], and unsupervised methods using clustering
as an inherent part of network tra�c analysis [16]. In some latest works, even
distributed, robust approaches utilizing strategies from trust modeling and game
theory were introduced [2].

The most relevant works, assuming the nature of our dataset, include one-
class anomaly detection methods for IDS [20], and semi-supervised approaches
for tra�c classification [9]. From the learning point of view, the most related
works include utilizing Random Forests algorithm to build intrusion patterns [8]
or to detect anomalies through the random forest outlier measure [29].

However, in real world practice, there are numerous issues a�liated with an
online use of machine learning models on actual networks, and majority of the
IDS currently in use are still either rule, or expert system based [18], providing
the advantage of interpretability. A somehow hybrid approach is presented in
Camnep [22], which combines expert rules for information and feature extraction
on the lower stages, with data mining, classification, agent techniques and trust
modeling in the final stages [23].

A number of the related works refer to a popular dataset created in 1999
named KDD’99 [19], published by Defence Advanced Research Projects Agency
(DARPA). Although it was a step forward in comparing and evaluating IDS ap-
proaches, this work has received a lot of critique for including flaws in many sta-
tistical respects [27], limitations that are inherited from the DARPA datasets [17],
and is widely considered outdated. While problems with the KDD’99 dataset are
well-known, in this paper we refer to a real-use IDS Camnep [22], processing re-
cent university tra�c, instead of KDD’99, in a widely used NetFlow format to
guide and evaluate ourselves, so that we can work with actual incidents and
provide feedback relevant to the system.

In contrast with most previous works on detection we take a rather di↵erent
approach than just classifying preprocessed standalone connections with fea-
tures, that are not always present in practice, as we address the problem on
an event layer, built on top of the NetFlow records. The main contribution of
this work is then the joint approach to the detection problem, aggregating flows
into events and leveraging the potentially unlimited source of useful background

samples (Section 4) for the respectively customized tree ensemble learning model
(Section 5.1). We finally evaluate our model against real-use IDS [22], while uti-
lizing the NetFlow standard format, collected from in-line university network
probes, all in actual development with Cisco research.

3 Tra�c data

The tra�c data we work with were collected from local university (CTU) net-
work during a period of one week. In its raw form the data consist of elementary
information aggregated from network packets, which we refer to in this paper
as NetFlows. It is a unidirectional component of TCP (UDP, ICMP equivalent)
identified by shared source and destination addresses and ports, together with
the protocol, captured within the frame of activity defined by a timeout mech-
anism. The NetFlow format was introduced on Cisco routers to give the ability
to collect IP network tra�c as it enters or exits an interface, and it is a tuple of:

Start, Duration, Protocol, src-IP, src-Port, dest-IP, dest-Port, Flags,

#Packets, #Bytes

This format is widely adopted for security event logging and a number of
a�liated disciplines[12, 24]. As a comprehensible unit of network communication
with a number of high level features, many IDS works built their detection
capabilities on the NetFlow level [26], but generally the incidents and attacks
may consist of a multitude of NetFlows. Such sets of flows are commonly called
events. In addition to information carried by individual flows, events display
more complex aggregated properties that cannot be perceived on the individual
flow level [2].

Example 1. For a simplistic instance consider a sequence of flows aiming at a
particular endpoint port 22. If each of the flows is to be analyzed separately, it
can easily be considered as a regular ssh communication request. Yet when we
group those flows, according to their properties, such as the destination endpoint,
we can explore potential malicious ssh-cracking behavior from the distributed
plurality of small similar flows checking the same ssh endpoint during a short
time-scope, possibly transferring a considerable amount of data back afterwards.

In this paper, we work with two sources of available data: ground truth events

and background tra�c flows. Ground truth events represent attacks evaluated
and confirmed by a domain expert and constitute our only source of positive
training examples. They are quite scarce as there are only dozens of ground
truth events collected. The particular samples of attacks in our ground-truth
events include various types of port-scan behavior and samples of ssh-cracking.
We are aware that the particularities of these two types of attacks introduce
bias into the model, making it possibly hard to generalize over di↵erent types of
attacks, especially those with more complex network behavior. Nevertheless, for
the sake of clarity we refer to these samples in the rest of the paper as generally
the malicious events or attacks.

Background tra�c flows is then a large collection of all flows from a snapshot
of the local university network tra�c. Events occurring within this collection are
not available and yet need to be determined (Section 4). Also the true nature
of the underlying background tra�c is unknown, but believed to be generally
legit. Most of the events probably correspond to harmless activities but some
of them may also correspond to attacks. Since, in the end, we will need to
evaluate how accurately our learned models are able to detect attacks and, more
specifically, how close they can get to the performance of particular Camnep
rules, we will proceed as follows. In the training phase, we will always work
only with the ground truth events and with the unlabeled background tra�c
but in the testing phase, we will label the background tra�c using Camnep and
evaluate the accuracy of the learned models using its output labeled test-set
events. In the rest of the paper, we will refer to the background tra�c events
labeled as malicious by Camnep as the system samples.

Naturally, the use of labels obtained using Camnep as a proxy for the true
labeling has its drawbacks, particularly that a model which could detect the same
set of malicious events as Camnep perfectly and on top of that also some missed
malicious events would be considered worse than a model which would just
perfectly mimic Camnep. However, there is no simple remedy for this problem
except a laborious confirmation of the detected discrepancies by a domain expert,
which is costly and time-consuming and which we therefore did not perform for
this initial study (but which we plan to do in the future).

4 Event extraction

As we mentioned, the extraction of events from background flows is a crucial
step in the detection of malicious behavior. Unfortunately, there is no general
prescription of how an event should be formed based on the properties of the
underlying flow set, and common approaches (including Camnep) thus rely on
some form of flow clustering [5]. Whatever the underlying events look like, we
need to miss as few malicious samples as possible, and thus we generally want
the event extraction procedure not to be picky about what constitutes an event.
For this reason we restrain from using standard clustering algorithms, employing
pair-wise similarity metric defined on the flow level, as they would introduce a
bias, while assigning each flow into a single cluster, possibly causing some of
the attacks to be missed. In other words, in this stage we want to generally
maximize recall of events and leave the burden of selecting the proper malicious
ones on classifiers trained to do so based on past data. On the other hand, we
also cannot extract all subsets of background flows as events because there would
be an astronomical number of them. Therefore, the way the background event
samples are constructed comes from generic rules, capturing only very general
constraints on what is and what is not an event. Most of these rules can be
understood as a parallel to the basic NetFlow/IPFIX aggregation features [7],
but they operate on top of the Netflow level, creating more complex aggregates
with considerable amount of redundancy for the sake of proper event recall

IP x Port y

........IP a Port b..... IP x Port y

........IP a Port b.....IP x Port y

IP a Port b

A simple "response/request"
type of event

A distributed "response"
type of event

A distributed "request"
type of event

flow 1 flow n

flow 1 flow 1 flow m

Fig. 1. Illustration of event structure type behavior variations as induced by the use
of background event extraction rules.

maximization (while surely extracting a number of false events, too). We design
the extraction rules as follows.

endpoint rules

1. all flows share the same source IP and source port
2. all flows share the same source IP and destination port
3. all flows share the same destination IP and source port
4. all flows share the same destination IP and destination port

similarity rules

1. all flows share the same protocol
2. all flow sizes, i.e. number of bytes transferred, are similar
3. all the flows are close enough in time

Each of the subsets of the above set of 4 address rules {1..4}, combined
together with the full set {1, 2, 3} of similarity rules, constitute a prescription on
how to extract event from the used background tra�c netflow data. Applying
all of these combinations exhaustively on the data, as described in Algorithm 1,
we can extract high diversity of network events.

In the background event extraction process, the incoming NetFlow sequence
is simply being split into discrete time intervals to consider the events within,
which is sort of a standard in network tra�c monitoring and analysis [25]. The
sets of flows are then stored in clusters, growing as the new NetFlows are com-
ing from the tra�c. The incoming flows are checked against the rules that define
a mask on the flow endpoints and other static properties, such as protocol in
our simple scenario. Each of the flow clusters also stores a number of proper-
ties such as the values of common endpoints, average size of flows, flags, etc.
These properties are maintained during the whole process, resulting into events
that represent diverse network behavior, including variety of structural configu-
rations of events, such as those depicted in Figure 1, which are similar to graphlet

patterns explored in other works on flow tra�c classification [13].

Algorithm 1 Background event sample extraction
1: ruleBase the rule combinations for generic events
2: flows the incoming sequence of NetFlow
3: winSize maximal time spread of flows
4:
5: function DistributeFlows(flows) . flow distribution
6: minTime time of the first flow 2 flows
7: maxTime time of the last flow 2 flows
8: intervalCount (maxTime�minTime)/winSize

9: flowWindows emptySet

10: for all flow 2 flows do

11: idx = (flow.time�minTime)/winSize

12: flowWindows

idx

= flowWindows

idx

[flow

13: return flowWindows

14:
15: flowWindows DistributeFlows(flows)
16:
17: procedure ExtractEvents . flow aggregation
18: for all flowWindow 2 flowWindows do

19: for all rule 2 ruleBase do

20: for all flow 2 flowWindow do

21: if flow.properties ✓ rule.properties then

22: JoinClusters(flow,rule)

23:
24: events emptySet

25:
26: procedure Joinclusters(flow, rule) . rule checking
27: added false

28: for all cluster 2 events do

29: endpoints = rule.endpoints ^ cluster.endpoints

30: if endpoints ✓ flow.endpoints then

31: if flow.size ⇡ cluster.averageSize then

32: cluster = cluster [flow

33: endpoints = endpoints \ flow.endpoints

34: cluster.endpoints = endpoints

35: added true

36: if ¬added then

37: nC = {flow}
38: nC.endpoints = flow.endpoints ^ rule.endpoints

39: events = events [nC

We note that the configuration of this exhaustive extraction strategy ensures
that every event detected by Camnep from the same tra�c data will also occur
as some event, or a subpart thereof, in the extracted background-tra�c event
set, and so the proper event recall is truly maximal. Moreover, various valid
parts of such an event might get extracted as well.

Example 2. For instance, in our setting all single flow ssh requests to an endpoint
server within a short time period will get extracted as a compact ”many-to-one
ssh-requests” event, yet some of those requests might get grouped by the source
IP only, as well as all of these single requests will again stand as separate ssh-
request events in the final background event dataset.

This does not mean that all flow subsets of an event are extracted, but
generally rather those maximal sets that exhibit some interesting and common
behavior of flows, according to their structural and other properties, as restricted
by the generic prescription rules and the nature of the tra�c itself.

5 Learning

The goal of learning a classifier from the network tra�c data is to automatically
generalize knowledge from a small number of ground truth attacks available,
with an accuracy comparable to that of a human domain expert. For that we
use similar, relatively simple and intelligible representation of an event as a set
of 30 features calculated from standard aggregation functions applied over the
sets of contained flows and their attributes, such as count of flows, average of
#packets, standard deviation of #bytes, etc.

There is a wide variety of di↵erent methods for training classifiers from data.
However, as it turns out, the characteristics of the network tra�c data which we
study in this paper make a straightforward application of o↵-the-shelf machine
learning tools a bit problematic. The two main reasons for this are as follows.
First, we have labels only for the positive examples (the ground-truth malicious
events) and we only know about the other larger part of the data coming from
the background tra�c that the fraction of positive examples is extremely small.
Second, the datasets which we work with are highly class-skewed, with a skew
usually of several orders of magnitude (the ratio of 1 : 105 is easily possible in
this domain) as total majority of the events in the background tra�c correspond
to normal activities.

Besides straightforward approaches, such as considering the background traf-
fic globally negative, there are remedies to tackle this problem. In particular,
there is variety of anomaly detection approaches, utilizing notably one class
classifiers [14], and semi-supervised strategies, exploiting the unlabeled majority
of data through the few labeled samples and some a priori assumptions [11]. A
similarly motivated approach is to exploit the assumption that malicious events
are rare and similar to each other, which would ideally mean that they occupy
small neighborhoods of ground-truth malicious events in the feature space. We
further explore this intuition through a method based on ensembling techniques.

5.1 Subsampled random forests

One of the best-performing [10] machine learning algorithms these days is the
Random Forest [4]. The algorithm creates an ensemble of decision trees by bag-
ging. In each iteration of the Random Forest algorithm, a bag of examples is
randomly selected by sampling with replacements the same number of examples
as is in the original dataset. Then, one tree is learned upon each such resam-
pled dataset where, in the learning process, the features to be used in a split
node are only selected from a randomly sampled subset of features. The out-
put of a learned Random Forest classifier is computed as the average of votes
of the individual trees in the ensemble. The classification of a test example is
then performed by comparing the output of the random forest classifier to a
selected threshold. Thus, by decreasing the threshold, one can usually increase
the number of true positives but also, at the same time, the number of false
positives. The output of Random Forest can also be thought of as the confidence
of classifying an example as positive. It can so be used to rank events from most
suspicious to least suspicious.

However, Random Forest itself is not well suited for learning from imbalanced
datasets. There have been two main remedies proposed to tackle this problem [6],
one of them based on cost sensitive learning, and the other on the use of sampling.
The cost sensitive methods performed poorly in our scenario and thus we further
explored the sampling methods that are able to target a deeper issue. The issue
is that when the number of background-tra�c examples becomes really large,
it is no longer just a matter of balancing the cost thresholds, as the trees in
the ensemble become very correlated in the sense that they share very similar
decision boundaries, and therefore the output of the learned forests will be equal
for a majority of events, making it impossible to reasonably rank them by their
suspiciousness. To solve this problem, we utilize a simple modification of the
original majority class subsampling strategy [6], somewhat similar to [3], stated
as follows. When sampling the positive examples of which there are only a few
instances, we follow the normal strategy and sample with replacements a set of
the same size as the positive set, but when sampling the negative examples we
sample a smaller set (also with replacements) with the subsampling ratio given
as a parameter. Intuitively this simple strategy should increase the variability
among the trees.

Example 3. An illustration of the intuition giving a rationale for the above
method is shown in Figure 2. Here, the examples are 1-dimensional and can
acquire values from 0 to 1. There are 105 learning examples sampled from the
uniform distribution on the interval (0, 1). The examples to the left from 0.1
threshold are classified as positive and the rest as negative. We train a bagged
ensemble of threshold decision rules on this data. The dash-dotted line in Fig-
ure 2 corresponds to outputs of an ensemble obtained by conventional bagging,
whereas the solid curve corresponds to outputs of an ensemble trained by the
method in which negative examples are always subsampled for each bootstrap
sample. We can notice that the subsampled case still gives the same output for

Fig. 2. Illustration of the intuition for the subsampled random forest method.

the examples in the area where positive samples occur, which is a desirable be-
havior in the case of expert-labeled ground-truth positive events. On the other
hand, the output decays more slowly in the area of negative examples and thus
allows us to rank them. We expect that a similar e↵ect takes place while sub-
sampling the negative examples in the random forest model. The results of our
experiments performed in Section 6 actually suggest that this is indeed the case.

The motivation for the subsampling method employed in this work is di↵erent
from the motivation for the methods developed in literature for dealing with
imbalanced datasets using Random Forests [6, 3]. In our case, what we need to
achieve is to have di↵erent output values for as many examples as possible, so
that we can rank the events by our confidence that they are attacks and not a
normal tra�c. We also know class labels of only a subset of positive examples
and no class labels for negative examples. On the other hand, in existing works,
the main motivation is to improve classification performance when all class labels
are known.

6 Evaluation

We performed several experiments in order to evaluate the ability of di↵erent
types of models to detect malicious events in the data. For training, we only
used the ground truth and the background tra�c data. For testing on sepa-
rate test-sets, we created labeled events using the Camnep system utilizing the
expert rules. As described in Section 3, this means that some of the false posi-
tive events detected by some classifiers may in fact correspond to true positives,
and so our evaluation is a bit skewed towards pessimism, but there is no other
tractable way of obtaining labels for the events in the background tra�c part of
our dataset. Moreover, as we will see, some classifiers (notably the subsampled
random forests) are able to obtain some very good ROC curves, which indirectly
confirms accurateness of the labeling provided by Camnep.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate

TP
 ra

te

Random Forests
Single tree (C4.5)
KNN
SVM
Logistic regresion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate

TP
 ra

te

full bootstrap
0.1 subsample
0.01 subsample
0.001 subsample

Fig. 3. A comparison of the selected state-of-the-art classifiers with ROC analysis,
where Random Forest and a single tree model dominate the beginning of the ROC(left).
Enhancement of Random Forest with the introduced subsampling technique boosts
the performance further(right), with the subsample ratio varying from a full boot-
strap(default Random Forest) to 0.001 subsample.

6.1 State of the art classifiers

The first logical step, after performing initial data exploration experiments to
justify the machine learning approach, was to test o↵-the-shelf, state-of-the-art
machine learning algorithms. The algorithms we tested were decision trees, ran-
dom forests, support vector machines, logistic regression and k-nearest neighbors.
Recall that the extreme class-skew of the dataset can render some otherwise very
good conventional algorithms unusable for our problem. Although some reme-
dies could be found for those, the instant superior performance of trees and their
ensembles, especially in the beginning of ROC, as displayed for comparison in
Figure 3 (left), led us to exploit further in their direction.

6.2 Subsampled random forests

The performance of Random Forests, although superior to other standard ap-
proaches, was still not satisfactory. Most of the attacks were correctly classified
right from the start, i.e. with very low false positive rates, but the rest of the
system attacks was not covered until the false positive rates reached unbearable
levels (Figure 3, left). On the other hand, we noticed that these system attack
samples were possible to be in covered in some way, e.g., by generalized lin-
ear regressions. However, we could expect such behavior based on the intuition
presented in Section 5.1. There we explained why subsampling the background
tra�c in the process of learning random forest classifiers should be beneficial in
settings like ours, where there are a few positive examples and a large number
of unlabeled samples, most of which are probably negative.

Fig. 4. CLS visualization of the model behavior by the means of ROC characteristics

We have tested various subsample ratios as parameters for the subsampling
strategy, and the resulting influence on the ROC performance of the tree en-
semble can be seen in Figure 3 (right). Generally, we can note that the full
bootstrap performance, equal to the performance of the default Random Forest,
is always improved by the introduction of subsampling in terms of the area un-
der the ROC curve. The decreasing sizes of bootstraps are gradually progressing
towards higher true positive rates at the expense of increasing the false positives
under di↵erent paces. Although the results are not conclusive for choosing a
generally optimal sub-sample ratio, we further favor the rates from around 0.01
to 0.1, providing a satisfactory compromise between the true and false positives.

6.3 Model analysis

We have shown that an automatic method is able to learn a model with a perfor-
mance similar to the expert rules designed in Camnep. To further evaluate and
interpret the behavior of the learned model, we visualize the results in a similar
fashion to ROC characteristics as follows. We mark the system attack samples
covered by the model as true positives, those that were not covered as false
negatives, and possibly regular tra�c covered as false positives. All these char-
acteristics were then recorded for varying classification threshold scores. Using a
fast dimension reduction technique called Calibrated Least Squares (CLS) [21],
that was best able to visually distinguish these samples, we display the results,
for a chosen threshold, in Figure 4. From the projection we identify that the
most significant dimensions are mostly correlated with the overall size of events,
which is generally reflected in the expert rules, too. To search for some closer
correspondence with Camnep rules, we further explore the interpretability of
the model by extracting a single tree model from the ensemble, using a learning
technique introduced in [1]. For the interpretation, the extracted tree had to
be rapidly pruned, which renders its node decisions partially inaccurate. Nev-
ertheless, from the splits in the nodes of the tree, we were able to identify a

number of patterns with an interpretation similar to the original Camnep rules.
Some examples of the extracted decisions from the paths commonly leading to
malicious-behavior-signed leaves in the tree, are as follows.

– If the percentage of unique sizes of flows is lower than 40%
– If the average number of packets transferred is lower than 6
– If the shared destination port of flows equals 22
– If the number of unique source ports is greater than 5

We are aware that the generality and accuracy of these decisions are dis-
putable, and some bias towards the attack samples used is exhibited (e.g., the
22 port rule for ssh-cracking). Nevertheless, we present the interpretation as
an interesting option to validate design of expert rules, by which we indirectly
confirm the validity of both the model and the original rules used in Camnep.

7 Conclusions

In this paper we presented and analyzed adaptive means to learn an intrusion
detection model, from an extremely small number of ground truth attack rep-
resentatives, with a performance competitive to the expert rule driven process
provided in a part of Camnep IDS system [22].

To capture more complex aggregation properties of the malicious behavior
in scope, we addressed the problem on the event level, built on top of the Net-
Flow layer, for which we introduced a fast, generic, heuristic event extraction
procedure. Recognizing the lack of ground truth event samples in the domain of
IDS, we utilized this procedure to extract variety of presumably normal event
behavior from a given background university NetFlow tra�c. With the new ex-
tended training sample set, consisting of a few original ground truth attacks
and essentially unlimited number of background events, we presented machine
learning methods to compare against the output of Camnep on the same tra�c.

To surpass the results of the state-of-the-art algorithms tested, we introduced
a novel random-forest-based subsampling method for tuning an ensemble tree
classifier, with a semi-supervised motivation, to account for the imbalanced na-
ture of the data. This method is based on bootstrap subsampling, suppressing
the correlation of individual trees, w.r.t. class frequencies, and by its means we
increased the ensemble performance beyond the scope of regularly used tuning,
such as sample or misclassification weighting. The results of the experiments
performed suggested for the benefits of our bootstrap subsampling method, the
overall ability to learn to detect the attacks from the tra�c in scope, and also
indirectly confirmed validity of the approach and particular rules from Camnep.

Acknowledgements. This work was supported by Cisco sponsored research
project ”Modelling Network Tra�c with Relational Features”, and Czech Tech-
nical University internal grant SGS14/079/OHK3/1T/13. Part of this work was
done while the second author was with KU Leuven where he was supported
by Jan Ramon’s ERC Starting Grant 240186 ”MiGraNT: Mining Graphs and
Networks, a Theory-based approach”.

References

1. Van Assche, Anneleen, and Hendrik Blockeel. Seeing the forest through the trees:
Learning a comprehensible model from an ensemble. In Machine Learning: ECML
2007, pages 418–429. Springer, 2007.

2. Karel Bartos and Martin Rehak. Trust-based solution for robust self-configuration
of distributed intrusion detection systems. pages 121–126, 2012.

3. Jerzy B laszczyński, Jerzy Stefanowski, and Lukasz Idkowiak. Extending bagging
for imbalanced data. pages 269–278, 2013.

4. Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
5. Umang Kamalakar Chaudhary, Ioannis Papapanagiotou, and Michael Devetsikio-

tis. Flow classification using clustering and association rule mining. In Computer
Aided Modeling, Analysis and Design of Communication Links and Networks (CA-
MAD), 2010 15th IEEE International Workshop on, pages 76–80. IEEE, 2010.

6. Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced
data. University of California, Berkeley, 2004.

7. Benoit Claise. Cisco systems netflow services export version 9. 2004.
8. Reda M Elbasiony, Elsayed A Sallam, Tarek E Eltobely, and Mahmoud M Fahmy.

A hybrid network intrusion detection framework based on random forests and
weighted k-means. Ain Shams Engineering Journal, 4(4):753–762, 2013.

9. Je↵rey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey Williamson.
O✏ine/realtime tra�c classification using semi-supervised learning. Performance
Evaluation, 64(9):1194–1213, 2007.

10. Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do
we need hundreds of classifiers to solve real world classification problems? The
Journal of Machine Learning Research, 15(1):3133–3181, 2014.

11. Te Ming Huang and Vojislav Kecman. Semi-supervised learning from unbalanced
labeled data–an improvement. In Knowledge-Based Intelligent Information and
Engineering Systems, pages 802–808. Springer, 2004.

12. Hongbo Jiang, Andrew W Moore, Zihui Ge, Shudong Jin, and Jia Wang.
Lightweight application classification for network management. In Proceedings of
the 2007 SIGCOMM workshop on Internet network management, pages 299–304.
ACM, 2007.

13. Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc:
multilevel tra�c classification in the dark. In ACM SIGCOMM Computer Com-
munication Review, volume 35, pages 229–240. ACM, 2005.

14. Shehroz S Khan and Michael G Madden. A survey of recent trends in one class clas-
sification. In Artificial Intelligence and Cognitive Science, pages 188–197. Springer,
2010.

15. Pavel Laskov, Patrick Düssel, Christin Schäfer, and Konrad Rieck. Learning in-
trusion detection: supervised or unsupervised? pages 50–57, 2005.

16. Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in net-
work intrusion detection using clusters. pages 333–342, 2005.

17. John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM transactions on Information and system Security, 3(4):262–294, 2000.

18. Masayoshi Mizutani, Keiji Takeda, and Jun Murai. Behavior rule based intrusion
detection. pages 57–58, 2009.

19. Adetunmbi A Olusola, Adeola S Oladele, and Daramola O Abosede. Analysis of
kdd99 intrusion detection dataset for selection of relevance features. In Proceedings

of the World Congress on Engineering and Computer Science, volume 1, pages 20–
22, 2010.

20. Roberto Perdisci, Guofei Gu, and Wenke Lee. Using an ensemble of one-class svm
classifiers to harden payload-based anomaly detection systems. In Data Mining,
2006. ICDM’06. Sixth International Conference on, pages 488–498. IEEE, 2006.

21. Tomáš Pevný and Andrew D Ker. The challenges of rich features in universal
steganalysis. 2013.

22. Martin Rehak, Michal Pechoucek, Pavel Celeda, Jiri Novotny, and Pavel Minarik.
Camnep: agent-based network intrusion detection system. pages 133–136, 2008.

23. Martin Rehak, Michal Pechoucek, Martin Grill, Jan Stiborek, Karel Bartoš, and
Pavel Celeda. Adaptive multiagent system for network tra�c monitoring. IEEE
Intelligent Systems, (3):16–25, 2009.

24. Dario Rossi and Silvio Valenti. Fine-grained tra�c classification with netflow data.
pages 479–483, 2010.

25. Chakchai So-In. A survey of network tra�c monitoring and analysis tools. Cse
576m computer system analysis project, Washington University in St. Louis, 2009.

26. A. Sperotto, G. Scha↵rath, R. Sadre, C. Morariu, A. Pras, and B. Stiller. An
overview of ip flow-based intrusion detection. Communications Surveys Tutorials,
IEEE, 12(3):343–356, Third 2010.

27. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali-A Ghorbani. A detailed
analysis of the kdd cup 99 data set. 2009.

28. Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion
detection by machine learning: A review. Expert Systems with Applications,
36(10):11994–12000, 2009.

29. Jiong Zhang, Mohammad Zulkernine, and Anwar Haque. Random-forests-based
network intrusion detection systems. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 38(5):649–659, 2008.

