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ABSTRACT

As severe dropout in single-cell RNA sequencing (scRNA-
seq) degrades data quality, current methods for network in-
ference face increased uncertainty from such data. To exa-
mine how dropout influences directional dependency infe-
rence from scRNA-seq data, we thus studied four methods
based on discrete data that are model-free without paramet-
ric model assumptions. They include two established me-
thods: conditional entropy and Kruskal-Wallis test, and two
recent methods: causal inference by stochastic complexity
and function index. We also included three non-directional
methods for a contrast. On simulated data, function index
performed most favorably at varying dropout rates, sample
sizes, and discrete levels. On an scRNA-seq dataset from de-
veloping mouse cerebella, function index and Kruskal-Wallis
test performed favorably over other methods in detecting
expression of developmental genes as a function of time.
Overall among the four methods, function index is most
resistant to dropout for both directional and dependency
inference. The next best choice, Kruskal-Wallis test, carries
a directional bias towards a uniformly distributed variable.
We conclude that a method robust to marginal distributi-
ons with a sufficiently large sample size can reap benefits
of single-cell over bulk RNA sequencing in understanding
molecular mechanisms at the cellular resolution.
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1. INTRODUCTION

Measuring RNA abundance in individual cells, single-cell
RNA sequencing (scRNA-seq) provides an unprecedented re-
solution to study molecular mechanisms underlying different
cell types within a tissue. This enables biology inquires im-
possible with bulk RNA sequencing, where one measurement
of a transcript represents the total of that transcript over all
cells in a sample. One such inquiry is cell-type-specific gene
network inference. This opportunity is however hampered
by a great deal of uncertainty in the readout of transcript
abundance in scRNA-seq. Dropout, also known as observed
zeros, is a limitation of current scRNA library preparation
techniques [10]. It refers to RNA molecules in a cell not
being captured for reverse transcription—a necessary step
during library preparation. It leads to a multitude of zero
transcript levels for a gene in 30-90% cells [2]. Several popu-
lar network inference software packages developed without
considerations of dropout amounted to nearly random gu-
essing on scRNA-seq data [7]. Network inference after data
imputation remains unexplored for a risk of false positives
due to a circular argument [1].

Necessary to many network inference applications are both
directional and dependency inference between two random
variables X and Y, which can represent levels of gene expres-
sion or covariates in scRNA-seq experiments. In directional
inference, we test Y being a function of X versus X being
a function of Y’; in dependency inference, we test Y being a
function of X versus X and Y being statistically indepen-
dent. Existing methods that simultaneously address both ty-
pes of inference are mostly parametric regression analysis [9].
With the throughput of one scRNA-seq experiment appro-
aching millions of cells, it is feasible to study complex non-
linear patterns model-free without predefined mathematical
models. Thus, we focus on model-free statistics based on dis-
crete data here. The established conditional entropy and the
recent causal inference by stochastic complexity (CISC) [4]
are popular choices for directional inference applicable to
discrete data. Kruskal-Wallis test [11], based on the discre-
pancy between group rank means, can do both directional
and dependency inference. However, it is not optimized to
capture functional dependency (f: X —Y), favoring monoto-
nic over non-monotonic functions.



A recently introduced measure called function index claims
functional optimality—it is maximized if and only if Y is a
non-constant function of X [12,18,34]. Measuring the effect
size of the functional chi-squared statistic (FunChisq) [18,
32,35], function index ranges from 0 to 1 and has been used
for analyzing bulk transcriptome sequencing data [12, 34].
Similar to other dependency measures, function index is mi-
nimized if and only if X and Y are empirically independent.

We evaluated the performance of these methods on both
simulated data and real scRNA-seq data in contrast to Pear-
son’s chi-squared test, mutual information, and Pearson’s
correlation. The performance is measured by percentage of
incorrect directions and areas under the receiver-operating
characteristic (ROC) and precision-recall (PR) curves. New
from previous scRNA-seq dropout studies, we delved into
how dropout rates, sample sizes, and discrete levels can in-
fluence the performance. We revealed that function index
performed robustly relatively to other methods in both di-
rectional and dependency inference. We also observed that
increasing the sample size can remediate dropout to a de-
monstrated extent. Our findings suggest that with a suffici-
ent sample size one can make an informed choice of method
for directional dependency inference to overcome dropout in
scRNA sequencing to a definite advantage.

2. METHODS

2.1 Function index

As function index was just recently introduced [12,18,34],
we provide its formulation and a justification on its appli-
cation to scRNA-seq data. Let X and Y be two discrete
random variables of r and s levels, respectively. Given n
pairs of (X,Y) observations, the FunChisq test is defined
on the r X s contingency table formed by X being the row
variable and Y being the column variable. The value at row
7 and column j of the table, n;;, denotes the number of pairs
with X =4 and Y = j. We use n,. for the sum of row ¢ and
n.; for the sum of column j. The FunChisq test statistic is
defined by
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Mathematical and statistical properties of FunChisq are de-
rived in [18,32,35]. Function index is designed to measure the
effect size of functional dependency independent of sample
size. It was first introduced and applied to bulk transcrip-
tome data analysis in [12,18,34]. The function index ¢ is
defined by the square root of the ratio of FunChisq test sta-
tistic to its maximum attainable value:
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The numerator and denominator within the square root scale
with n. Thus function index is independent of sample size,
suitable for measuring the effect size. It is proven [18] that
&s € [0,1] is minimized if and only if X and Y are em-
pirically independent and maximized if and only if YV is a
non-constant function of X. We thus call function index
asymmetrically functionally optimal. A larger £ indicates
a stronger functional dependency of Y on X.
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On data with a large sample size, P-value is not necessa-
rily effective: a test statistic tends to have a small P-value
but with a weak effect. Thus a quantitative measure of effect
size is important [26]. As single-cell data are considered “big
data”, where effect size statistics are more relevant [3], ex-
ploring function index usage on scRNA-seq data is justified.

2.2 Implementations of all seven methods

The R package FunChisq [33] implements function index
within the function fun.chisq.test(). Function index is
returned in the function output. Details including exam-
ples on the function usage are provided in package docu-
mentation. Conditional entropy and mutual information [8]
are implemented as functions condentropy() and mutin-
formation() in the R package infotheo [16]. Pearson’s chi-
squared test [20], Kruskal-Wallis test [11] and Pearson corre-
lation test [25] are available via R functions chisq.test(),
kruskal.test() and cor.test(), respectively in the pac-
kage stats [21]. CISC [4] was ported to R from the provided
Python implementation [4]. Pearson’s correlation is included
as a baseline for comparison.

3. RESULTS

To understand how the dropout rate, the sample size, and
the discrete level can influence directional dependency infe-
rence, we present the performance of the seven methods on
simulated and real scRNA-seq datasets.

3.1 Performance on simulation studies

Generating ground truth and noise-free tables

To evaluate the performance of both directional and depen-
dency inference, we simulated 50,000 contingency tables at
five dropout rates, five table sizes, and five sample sizes.
For directional inference evaluation, we generated (1) 100
many-to-one functional patterns from X to Y to represent
true directional patterns and (2) the transpose of the 100
many-to-one patterns, which we also call one-to-many non-
functional patterns, to represent false directional patterns.
For dependency inference evaluation, we generated (3) 100
functional patterns as true dependent patterns and (4) ano-
ther 100 patterns where X and Y were independent as false
dependent patterns. The four table types as illustrated in
Fig. 1 are generated as contingency tables by the R function
simulate_tables() [24] at varying sample sizes and table
sizes. In each contingency table, X and Y are always the row
and column variables, respectively. Functional tables have a
uniform marginal for X; one-to-many tables have a uniform
marginal for Y; independent tables have uniform marginals
for both X and Y.

Mimicking noise and simulating dropout

To simulate biological variations or technical noise not due
to dropout, we applied house noise at level 0.2 to all tables.
This noise level estimated from bulk transcriptome data [31]
represents a possible scenario for real data. The first row of
Fig. 1 shows four table types with noise but no dropout.

We randomly chose samples at a given percentage, or dro-
pout rate, in each variable to reassign them to the first level
that is analogous to zero expression level. Figure 1 illustrates
how an increasing dropout rate gradually erases the signal
in the tables within each column.
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Figure 1: Four table types with noise and dropout. Each table has 10,000 samples at a house noise level of
0.2. Each column illustrates a table type. Dropout rates are 0, 0.3 and 0.9 for each row. The maximum value
in each table row is marked by an extra box to indicate the best functional patterns from X (row) to Y
(column). A cell in a darker shade has more samples in it. Many-to-one versus one-to-many tables are used
in directional inference. Functional versus independent tables are used in dependence inference.

Performance of directional inference

We first compared the four asymmetric measures on in-
ferring direction. Figure 2 shows percentages of incorrect
directions for all four methods over 100 pairs of a many-to-
one functional table and its transpose. Even though dropout
rates are highly variable from experiment to experiment, a
typical scRNA-seq experiment can have about 50% dropout
on average [2]. At a fixed dropout rate of 50% and a fixed
table size of 5x5, more importantly,function index has a sig-
nificant drop in error ratefrom 36% to 15% when the sample
size increased from 100 to 100K, while other methods have
insignificant or no drop in the error rate, not being able to
benefit from larger sample sizes (Fig.2a). All methods, ex-
cept CISC, reduce error rates over decreasing dropout rates
at a fixed sample size of 10,000 and a fixed table size of
5x5 (Fig. 2b) or increasing discrete levels at a fixed dropout
rate of 50% and a fixed sample size of 10,000 (Fig. 2c). Sur-
prisingly, CISC makes no correct prediction at 0% dropout
and its accuracy is always close to a random guess. Overall,
function index makes the fewest number of mistakes.

Next, we evaluated how well a method ranks directions
among multiple tables including their transpose at varying
sample sizes, dropout rates and discrete levels. The metrics
are area under the ROC curve (AUROC) and area under the
PR curve (AUPR). As expected, the three symmetric me-
thods are ineffective (Fig. 3). As seen in Fig. 2, CISC is una-
ble to determine directionality. Kruskal-Wallis test is always
third in terms of both AUROC and AUPR.

Function index benefited the most from increased sample
sizes in AUROC at the dropout rate of 50% and the table
size of 5x5 (Fig.3a,b). Although second to conditional ent-

ropy in AUPR at small sample sizes, it catches up at large
sample sizes.

All performance worsens at increasing dropout rates with
the sample size at 10,000 and the table size at 5x5 (Fig. 3c,d).
Function index is notably better than other methods in AU-
ROC; however second to conditional entropy in AUPR.

At increasing table sizes with the sample size at 10,000
and the dropout rate at 50% (Fig. 3e,f), both conditional
entropy and function index show an overall increasing trend.
Function index is notably better than all other methods in
AUROC, while both function index and conditional entropy
perform similarly in AUPR.

Performance of dependency inference

Figure 4 presents the performance of the five methods on de-
pendency inference. Sample sizes, dropout rates, and table
sizes are setup identically with directional inference (Fig. 3).
In Fig. 4a,b, Pearson’s correlation noticeably underperforms
at small sample sizes, followed by Kruskal Wallis test and
CISC. In Fig. 4c,d, function index, Pearson’s chi-squared test
and mutual information demonstrate robustness to dropout
with perfect performance at a large sample size. Conditio-
nal entropy, CISC and Kruskal-Wallis test experience a ma-
jor degradation in performance at higher dropout. Pearson’s
correlation consistently underperformsat all dropout rates.
In Fig. 4e,f, function index, Pearson’s chi-squared test and
mutual information still maintain perfect performance. Con-
ditional entropy and CISC did poorly at smaller table sizes.
Pearson’s correlation consistently underperforms at all table
sizes. In summary, function index is also effective for depen-
dency inference. If directionality is not a concern, Pearson’s
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Figure 2: Percentage of incorrectly inferred directions on simulated data at varying dropout rates, sample sizes
and table sizes. Function index exhibits a definite advantage over other directional measures with increasing
(a) sample sizes, (b) dropout rates, and (c) table sizes, except at the smallest sample size or the highest
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Figure 3: Directional inference performance on simulated data at varying dropout rates, sample sizes and
table sizes. The effect of sample size: (a) AUROCSs and (b) AUPRs. The effect of dropout rate: (c) AUROCs
and (d) AUPRs. The effect of discrete level: (¢) AUROCSs and (f) AUPRs.

chi-squared test and mutual information can also be used
at large sample sizes, while conditional entropy and CISC
should be avoided.

3.2 Genes for mouse cerebellar development

We also evaluated the performance of the seven methods
for detecting directional dependency of gene on time on a
developing murine cerebellum (Cb) scRNA-seq dataset, pro-
filed at 12 development time points [6], using an independent
ground truth from the Mouse Genome Database [5].

The ground truth and data preprocessing

From the Mouse Genome Database [5], we selected 271 genes
important to murine Cb development as the ground truth.
These genes are associated with GO term cerebellum develo-
pment (GO:0021549) or the term abnormal Cb development.

As in [6], cells with fewer than 3,500 unique molecular
indices (UMIs) or greater than 15,000 UMIs were remo-
ved, accounting for dead or multiple cells in one droplet.
Cells containing over 10% mitochondrial UMIs were remo-
ved. Zero-expression, mitochondrial, and ribosomal protein
genes were removed. Raw counts were normalized by U. 4 =
logy(Ue,g - Um /Ue +1), where U, 4 is the UMI count for gene
g in cell ¢, U, is the UMI count for cell ¢ and U,, is the
median UMI across all cells.

To identify cell types, 1000 most overdispersed genes were
selected by a Z-score for dispersion [15]. Ward hierarchical
clustering [29] and dynamic tree cut [13, 14] were used to
group cells by expression of the 1000 genes. Expression pro-
files of known marker genes were used to assign clusters to
cell types [6], including progenitor cells and granule neuron
precursors (GNPs).
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We only used cells identified as progenitors or GNPs, as
most progenitors would eventually differentiate into a gra-
nule neuron [17], making these two cell types relatively consi-
stent and homogenous at different development stages. Also,
progenitors were abundant at earlier time points, while GNPs
were abundant at later stages [6], making the full usage
of the temporal spectrum. Together progenitors and GNPs
comprised of over half of the total ~40,000 captured cells.

The normalized expression values for each of 271 selected
gene in progenitor cells and GNPs were optimally discretized
using Ckmeans.1d.dp [28]. To avoid bias between genes due
to table size, we clustered each gene into 12 levels, equal to
the number of time points. Genes with fewer than 12 unique
values were used as discrete variable directly.
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Figure 4: Dependency inference performance on simulated data at varying dropout rates, sample sizes and
table sizes. The effect of sample size: (a) AUROCs and (b) AUPRs. The effect of dropout rate: (c) AUROCs
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Dropout imposed a strong impact on the performance of
directional inference, as shown by percentages of incorrect
directions inferred by the four asymmetric methods (Fig. 5).
Each method was evaluated for choosing the correct di-
rection from time to gene from pairs of a time-gene con-
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Figure 5: The impact of dropout on percentages of
incorrect directions detected on cerebellar develop-
ment genes by four methods. The correct direction
is from time to gene.

tingency table versus its transpose with (Configuration 1)
and without (Configuration 2) dropout added to the time
variable. The four methods exhibited sharply different be-
havior in response to dropout: Function index is the most
stable with an increase of 6.7% in error; conditional entropy
extraordinarily increased its error rate by 76.8%; Surprisin-
gly, CISC and Kruskal-Wallis test reduced in error rates by
59.7% and 21%, respectively. Dropout turned the distri-
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Figure 6: Performance on detecting cerebellar development genes in three configurations. Directional inference
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with dropout to gene (Configuration 2): (¢) ROC and (d) PR. Dependency inference from original (Og) time
versus shuffled time to gene (Configuration 3): (e¢) ROC and (f) PR.

bution of time variable from perfectly uniform to highly
non-uniform. This change of marginal distribution caused
distinct responses by the methods. Function index is the
most robust to this change; conditional entropy is biased
in favoring a direction from uniform to non-uniform; CISC
and Kruskal Wallis are biased towards a direction from non-
uniform to uniform.

Figure 6 depicts ROC and PR curves under the three
configurations. Configuration 1 (Fig.6a,b) tests directiona-
lity from time to gene, without dropout on the time varia-
ble. Conditional entropy has an advantage over all methods,
same as explained for Fig.5: the uniform marginal distri-
bution of time gave an unfair favor to conditional entropy.
The negative effect of this bias is demonstrated in Fig. 7,
where top genes inferred by conditional entropy are highly
uniform in time but non-uniform in gene, with nearly no
dynamics and thus uninteresting for this study. Both CISC
and Kruskal-Wallis performed worse than random guessing,
suggesting the adverse effect of marginal distributions as op-
posed to that favoring conditional entropy. Function index
is the second best in terms of both AUROC and AUPR.

Figure 6¢,d show the ROC and PR curves of Configu-
ration 2 to test the directionality from time with dropout to
gene. Conditional entropy loses the advantage and degrades
to random guessing, as the non-uniformity between time and
gene is similar. Kruskal-Wallis becomes the best performer.
Function index demonstrates relative immunity to margi-
nal interventions, experiencing a small drop in performance.
CISC does not improve in either AUROC or AUPR.

Configuration 3 (Fig. 6e,f) reveals a major flaw with con-
ditional entropy and CISC wherein they cannot distinguish
true from randomly shuffled patterns. Meanwhile, function
index performed best, slightly outperforming well-established
methods including Pearson’s chi-squared test, Kruskal-Wallis
test, mutual information, and Pearson’s correlation.

Ranking time-to-gene and gene-to-time patterns

On the original data, we applied each method to rank time-
to-gene and gene-to-time patterns for all 271 developmental
genes. The gene-to-time patterns are included to evaluate if
a method can be confused by the wrong direction. Function
index and Kruskal-Wallis obtained patterns reflective of de-
velopment biology literature. Figure 7a—d illustrate the top
two time-gene interactions inferred by both function index
and Kruskal-Wallis, long established for roles in Cb develo-
pment: Id3 was present at P5 in the internal granular layer
of the Cb in the postnatal rat brain [27], consistent with the
dynamic pattern in Fig.7a. Id3 has been identified among
top seven genes over-expressed in the clusters of Cb progeni-
tors [6]. Neurodl, a bHLH transcription factor, is well known
for Cb development via mediating the differentiation of Cb
granule cells. Neurodl is one of the most highly expressed
genes along the GNP trajectory [6]. Its conditional knockout
led to widespread granule cell necrosis [19]. The top two ge-
nes by conditional entropy are Poulfl and Hoxb1 (Fig. 7e,f).
Their ectopic expression or mutation leads to abnormal Cb
development [22,23,30]. However, in the wild-type develo-
ping Cb, these genes are suppressed; selecting them indicates
inadequacy of conditional entropy and CISC. Finally, CISC
ranked Poulfl—time highly, suggesting a deficiency in cap-
turing directions here.

4. DISCUSSION

Function index behaves most robustly at varying dropout
rates. Kruskal-Wallis test is biased to marginal distributi-
ons wherein it favored a direction to a uniformly distributed
variable. With a similar bias, CISC performed poorly ove-
rall, offering no benefit in either directional or dependency
inference. Conditional entropy carries an opposite bias to
promote a direction from a uniformly distributed variable.
It seems not practical for use on real data.
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Figure 7: Expression dynamics of top two genes detected by the four asymmetric measures on cerebellar
development data. Top two genes by function index: (a) Inhibitor of DNA binding 3 gene (Id3), and (b)
Neuronal differentiation 1 (Neurod1l). Top two genes by Kruskal-Wallis test are also (c) Id3 and (d) Neurod1.
Top two genes by conditional entropy: (e) POU domain, class 1, transcription factor 1 gene (Poulfl), and (f)
Homeobox B1 gene (Hoxb1). Top two genes by CISC: (g)Poulfl, and (h) Reversed gene Poulfl—Time.

From our simulation studies, it is encouraging to learn
that increasing the sample size can improve the quality of
directional inference. Additionally, all methods except CISC
benefited from greater discrete levels in directional inference.
This implies that even without renovating the scRNA-seq
library preparation technique, one still has alternatives to
deal with severe dropout. These possibilities seem not pre-
viously reported in the literature.

Our study did not evaluate directional RNA-RNA inter-
actions, which is desirable but experimentally infeasible at
present for several reasons: Coding RNAs typically do not
directly interact with each other; a non-coding RNA can re-
gulate another RNA but the former typically does not have a
polyA tail, thus not measured with current scRNA-seq tech-
niques; and the cell-type specific ground truth for directional
RNA interactions is vastly lacking. However, we expect this
situation to improve as scRNA-seq technology matures.

5.  CONCLUSIONS

Although single-cell RNA sequencing moves us closer to
cell-type specific understanding of molecular mechanisms,
the dropout phenomenon represents a thin glass wall before
reaching the goal. Directional and dependency inference are
the workhorses for a network inference method. Although
our studies suggest that the dropout challenge is greater to
the former than the latter, it may be overcome with a me-
thod robust to marginal distributions at a sufficiently large
sample size. Our findings support the use of function in-
dex as a basic statistic, which is both robust to marginal
distributions and model-free to encourage novel directional
pattern discovery. It enables cell-type-specific network cha-
racterization of molecular mechanisms.
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