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Abstract—Gene co-expression networks have frequently been
used for functional annotation. In these networks, an unknown
gene is annotated with terms that have already been associated
with genes whose expression profiles tend to correlate with the
expression profile of the unknown gene. Despite the biological
plausibility of this principle referred to as guilt-by-association,
its applicability has not been thoroughly experimentally verified
yet. In our paper, we formulate several statistical hypotheses con-
cerning the principle and test them on a representative expression
dataset. We demonstrate that gene annotation carried out with
co-expression networks clearly outperforms random annotation
and improves with increasing sample size and the knowledge of
gene co-location. Eventually, we discuss the practical significance
of this way of functional annotation.

Index Terms—gene expression, co-expression network, func-
tional annotation, guilt-by-association principle

I. INTRODUCTION

Correlation networks [1], [2] have proven to be useful for
analysis of large and high-dimensional biological data sets
[3], [4]. In a correlation network, each node represents a
variable (entity), and links represent correlations between the
variables. In general, the networks are used to address a couple
of issues. Most often, they can help to identify clusters of
densely interconnected nodes. These clusters often correspond
to important functional units of the system represented by the
network [5].

Further, other structural network characteristics such as
highly connected hub nodes could be found. These hubs may
serve as treatment targets, for example [6]. Last but not least,
the networks can serve to answer predictive tasks such as node
annotation, or link prediction [7]–[9].

Our paper focuses on a special kind of biological correlation
network called co-expression networks. In these networks,
the individual variables correspond to expression profiles. Co-
expression networks represent a major application of correla-
tion network methodology [3]. Gene co-expression networks
have frequently been used to explore the system-level function-
ality of genes [10]. Later, co-expression has also been applied
to interpret non-coding RNA (ncRNA) expression data [11].
When building a co-expression network, one has to make a few
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key decisions. A measure of association or correlation between
two expression profiles has to be selected [12]. The network
could either be binary or weighted [13]. In the first case, there
is a correlation threshold, a pair of variables is linked if and
only if their absolute correlation exceeds this threshold, and
all the existing links have unit weight [14], [15]. In the second
case, the network graph is full, and the links are most often
weighted by the magnitude of absolute correlation [3], [10].

One of the most important goals in co-expression network
analysis is annotating previously unknown genes, and ncR-
NAs [4], [13], [16]–[18]. The main principle that drives this
annotation is the guilt-by-association (GBA) principle [19].
An unknown gene or ncRNA is annotated with terms that have
already been associated with protein-coding mRNAs and other
ncRNAs whose expression profiles tend to correlate with the
profile under examination [20], [21]. In this way, expensive
and time-demanding experimental functional verification car-
ried out in vitro can be supplemented by cheaper and faster
computational predictive annotation performed in silico. An
example of a simple co-expression network demonstrating the
principle is in Figure 1.

Currently, there are several publicly available tools for gene
co-expression network analysis and function annotation. These
tools could be considered as a methodological standard in

Fig. 1: A binary co-expression network. The individual nodes
correspond to genes; edges connect correlated genes. The
genes annotated with a term of interest are in black; the genes
in white are known to be without this annotation. A gene
whose annotation is unknown is in grey. The goal is to decide
whether the gene should be annotated with the term of interest.
According to the GBA principle, the gene will likely be linked
with the term.



annotation with co-expression networks. WGCNA is a popular
R package for gene co-expression network construction and
module identification [3]. In WGCNA, functional annotation
can be done through the following steps: 1) identification of
clusters/modules of highly correlated genes, 2) enrichment
analysis of the constructed modules, and 3) annotation of
the nodes of interest with respect to how close they are to
the identified modules. ncFANs is a platform for the func-
tional annotation of non-coding RNAs [22]. The functions of
ncRNAs are proposed using hub- and module-based methods
described by Liao et al. [23]. The hub-based methods select the
directly connected nodes of the hub ncRNAs and assign the
enriched functions of these nodes to ncRNAs. The module-
based methods work on the same principle as the above-
described annotation in WGCNA. GCEN is a cross-platform
command-line toolkit to easily build a gene co-expression
network and predict gene function recently proposed in [24].
It implements the module-based methods as well as the anno-
tation through a random walk with restart (RWR) proposed
in [25]. RWR propagates annotations through the network
from seed nodes with the known gene function to nearby
nodes until convergence. However, a number of questions arise
when compiling the co-expression network and implementing
the general GBA principle. It has been pointed out that
(gene) function is not systemically encoded in networks but
dependent on specific and critical interactions [26]. It has also
been observed that the fraction of genes in a module that relate
to its main biological function is often <20%, and module-
trait correlations can be relatively low (correlation< 0.5) even
when statistically significant [13]. It has been shown that there
is an influence of the physical distance between genes and the
degree of their co-expression in breast cancer [27]. On the
other hand, in healthy breast tissue, gene co-expression was
independent of the chromosome location of genes [27].

The notion of the relevant neighborhood of the annotated
entity is therefore not trivial at all. It is crucial to find a
suitable size for the neighborhood and incorporate additional
knowledge in its construction. For this reason, we decided
to carry out a comprehensive experimental study that verifies
the applicability of the GBA principle in gene co-expression
networks and suggests a suitable method for its practical
application. We implement and test several different ways of
gene annotation in a large and representative co-expression
network that stems from a large gene expression dataset.
The subsequent statistical evaluation helps to assess whether
the gene annotation with the aid of co-expression networks
has both statistical and practical significance. To the best
of our knowledge, co-expression networks have frequently
been used for gene and ncRNA annotation; however, their
applicability has not been thoroughly verified yet. The existing
reviews on co-expression networks [4], [28] rather focus on
methodological comparison of the individual approaches than
their experimental verification.

The paper is structured as follows. The next section presents
our study’s overall design, including the formulation of fun-
damental statistical hypotheses. Further, the annotation algo-

rithm based on over-representation analysis is described. The
evaluation section gives the quality measures used in our
ablation study, including the comparison of our algorithm with
a random benchmark. Eventually, the results are evaluated and
summarized in a conclusion.

II. THE OVERALL DESIGN AND GOALS OF THE STUDY

This paper will experimentally study how far we can use co-
expression to predict gene function. In particular, we will deal
with a human genome and pathway annotation terms available
in Kyoto Encyclopedia of Genes and Genomes (KEGG) [29],
[30].

Co-expression will be calculated from a large expression
set from the Affymetrix microarray platform curated by the
Broad Institute. The dataset was used originally for learning
gene expression model using an artificial neural network
called D–GEX [31], and the networks with transformative
adaptive activation functions [32]. The main advantage of
this expression dataset is its representative size. It consists
of 111,009 biological samples; each sample comprises 22,268
probes. Another advantage is the uniform measurement plat-
form used for all the samples. The gene location information
was obtained from the Ensemble database [33].

We will construct a co-expression network for all the genes
whose profiles are available in the expression dataset and have
at least one KEGG annotation resulting in 3,305 genes with
available annotations (denoted as G). We will also propose and
test a family of prediction methods that will give a ranking
of KEGG annotations for a gene. Then, the methods will be
applied for every single gene (symbol ∈ G), and they will
construct a ranking of all the KEGG annotations (A=KEGG
annotations) for each of the genes. The more related a term
is to the gene, the higher it appears in the ranking. Next,
the predicted rankings will be compared with the actual gene
annotation; the higher the true gene annotations appear in the
rankings, the better the prediction. Eventually, the methods
will be statistically evaluated, and the best ranking method
will be reported and discussed further.

The goal of this paper is to illustrate the performance of
the discussed method using known annotations. Therefore, it is
assumed that we know the annotations for each gene except for
the target, whose annotations are inferred, in order to evaluate
the performance of a method.

In particular, we will test several statistical hypotheses (only
alternative hypotheses are mentioned):

1) The GBA principle can be used for gene annotation
with KEGG pathway terms. The ranking of KEGG terms
delivered by our algorithm that implements this principle
is closer to the true annotation than a random ranking.

2) Increased sample size makes the estimation of correla-
tion more robust and improves the gene annotations.

3) The knowledge of gene co-location improves the gene
annotation (co-located genes are considered related in
the co-expression network independently of correlation
in their expression profiles).



4) The treatment of correlation thresholds in the algorithm
matters. Multiple thresholds make the annotation predic-
tion more precise.

III. ANNOTATION ALGORITHM

The prediction will be based on over-representation analysis
[34]. The importance of every single KEGG term will be
evaluated through its over-representation in the annotations
within the set of genes that most correlate with the target
gene. This over-representation will be statistically evaluated
with the aid of Fisher’s exact test; the smaller the p-value of
the test, the better the term ranking.

The proposed method creates a ranking of candidate terms
for each gene. This ranking is based on the correlations of
the gene with other genes for which the terms are known. We
have used two ranking approaches; one is based mainly on a
single Fisher’s test for each term, while the other uses multiple
Fisher’s tests for each term.

In the first approach, the correlation of the target gene with
each of the genes with known terms is calculated, and we
then use the absolute value of the correlations. Since the gene
expression might have non-linear relationships between each
other, a Kendall correlation coefficient τ variant b [35] has
been used to control for monotonic transformation. Then a
threshold for splitting the gene set into correlated and uncor-
related genes is determined as a function of the calculated
correlations – e.g., a median. These two sets of correlated and
uncorrelated genes are then used to create a contingency table
for the given term, see Table I.

Correlated with g Uncorrelated with g Total
Annotated with t pca pca pa
Not related with t pca pca pa

Total pc pc p

TABLE I: A contingency table that quantifies the relationship
between a gene g and a KEGG term t. Each entry contains the
number of genes that meet the conditions. The total number
of genes is p.

This contingency table summarizing the numbers of corre-
lated and uncorrelated genes with and without the term is then
tested for statistically significant over- or under-representation
using Fisher’s exact test. The p-values of the tests for each term
for a particular gene are then used to construct the ranking of
the terms. The procedure for obtaining the single p-value for
a given threshold is depicted in Alg. 1. The ranking method
of the first approach is depicted in Alg. 2 and is denoted as
the corr ranker.

The second method is similar, but it does not select a single
threshold over correlations but evaluates multiple thresholds to
increase the robustness of the method. For a particular gene
and for each term that might be associated with the gene,
we threshold the absolute correlations using 200 individual
thresholds spaced uniformly over the interval of (0, 0.5). We
get 200 contingency tables and then 200 p-values from Fisher’s
exact tests. We aggregate the p-values for a given term and

gene using a function (e.g., a median or mean) to produce a
single value that is then used to create rankings of terms for
a given gene. The ranking method of the second approach is
depicted in Alg. 3. It is denoted as the p-value ranker. Several
aggregation functions used for either selecting thresholds over
correlations or aggregating p-values over multiple thresholds
as described above were tested.

For very small samples, it might be beneficial to utilize the
gene position information as closely co-located genes are more
likely to have a common function [36], [37]. For the purposes
of the proposed method, a gene is considered to be co-located
with another gene if their mutual distance on a chromosome
is less than n bps. The co-located genes are then considered to
be correlated for the purposes of the methods described above,
i.e., they are always added to the set of positively correlated
genes used for the calculation of Fisher’s exact test.

Algorithm 1 Valuer providing the value used for ranking the
symbols.

procedure VALUER(symbol, annotation, thresh) ▷
Provides the value of the given annotation for the symbol
for ranking

correlated symbols ←
(correlation matrix[symbol] ≥ threshold)− {symbol}+
co− located genes

return fisher(# uncorrelated with annotation,
# uncorrelated without annotation,
# correlated with annotation,
#correlated without annotation).pvalue ▷

p-value of the Fisher’s exact test
end procedure

Algorithm 2 Ranking using a single Fisher’s exact test for a
single symbol.

procedure RANKER CORR(symbol, quantile f)
values← []
for a ∈ A do

t← quantile f(correlation matrix[a] ▷ threshold
as a quantile of the correlation coefficients

values[a]← valuer(symbol, a, t)
end for
return rank(values)

end procedure

A. Evaluation

Since the goal of the method is to produce a ranking of
candidate annotations for each gene, we evaluate it using the
average difference of average ranks of the real annotations of
the gene (the known annotations for the gene) and the rest
of the candidate annotations. The advantage of this evaluation
measure is that it can be used even though individual genes
might have different numbers of correct annotations. Further-
more, such a method is beneficial as it closely resembles the



Algorithm 3 Ranking using multiple Fisher’s exact tests for
a single symbol.

procedure RANKER PVALS(symbol, quantile f)
values← []
for a ∈ A do

values[a]← quantile f([valuer(symbol, a, t) for t ∈
{0.005, 0.01, . . . , 0.5}]

end for
return rank(values)

end procedure

work of biologists when considering individual annotations by
a prioritized list of possible candidates without the need to a
priori set a threshold for selecting the candidates for further
research.

Specifically, for each gene g and ranking method m, we
define difference of mean ranks DMRm(g):

DMRm(g) =
1

|Ag|
∑
a∈Ag

rmg (a)− 1

|A \ Ag|
∑

a∈A\Ag

rmg (a)

(1)
where A is the set of all available annotations, Ag are

the real annotations of the gene g and rmg (a) is the rank
of annotation a for the gene produced by method m — all
annotations a ∈ A are ordered for each gene g and then
ranked, i.e., the highest possible rank is |A|. Since we allow
for ties in the ranking, the average rank of the tie group is
used for individual tied annotation.

The performance of a method is measured as the mean
DMRm(g) over all genes g ∈ G where G is the target set of
genes. Such measure is denoted as MDMRm:

MDMR(m) =
1

|G|
∑
g∈G

DMRm(g) (2)

For direct comparison of two candidate methods m1 and
m2, we use a pairwise measure — mean difference of DMRs
denoted as MDDMR:

MDDMR(m1,m2) =
1

|G|
∑
g∈G

(DMRm1(g)−DMRm2(g))

(3)
Since subsampled data from a larger set were used, ten

samplings for each sample size were obtained to reduce
performance differences of individual methods due to the
individual samples that were used for correlation calculation.
To avoid further complicating the notation, this is not reflected
in the formulas above; all presented values were obtained as
the mean over the relevant ten subsampling runs.

Also, a notion of a minimum rank (MR) was used for
evaluation; an MR is the rank of the first correct annotation
of a gene:

MRm(g) = min{rmg (a)|a ∈ Ag}. (4)

B. Statistical evaluation

The impact of individual parameters relative to a baseline
using MDDMR is tested using Wilcoxon signed-rank test
over all available variants with the respective parameters.

IV. IMPLEMENTATION

The whole workflow is summarized in Figure 2. It was
implemented in Python 3 using the libraries SciPy [38], pandas
[39]. However, since the repeated computation of the Fisher’s
exact test is costly, we have used the publicly available crate
fishers exact that implements the test in low-level, compiled
language Rust which we interfaced from Python as an in-
stallable library using maturin package. We have also created
a small Python module using the stack described above for
fast computation of the correlation matrix using Kendall’s τ
correlation coefficient.

V. RESULTS

Several factors influence the performance of the class of
the evaluated methods — sample size used for correlation
matrix calculation, usage of the co-location information (and
the co-location distance threshold), and the used thresholder
— that are analyzed in this paper. We show the influence
of each parameter separately by comparing the MDMRs
for different parameters and also by showing the relative
difference MDDMR of two variants that share the exact same
parameters with the exception of the examined parameter.

A. Sample size

Since biological data are notoriously difficult to obtain,
much research has to do with only a few tens of samples.
At the same time, robustness of correlation estimates strongly
depends on the sample size. To show the dependence, we have
created a few subsamples of the original dataset — for each
sample size in {20, 50, 100, 1000, 10000}, ten subsamples
were created.

As shown in Figure 3a, the performance improves signif-
icantly with increasing sample size with slowly diminishing
returns. While Figure 3a shows the overall performance,

A set of genes G

KEGG
database

Ensembl
database

D-GEX
database

Find a co-expression neighborhood for g

Repeatedly
pick a gene g

GBA – predict annotations for g

A fragment of network

Annotations Locations Expressions

Compare predicted and real annotations

KEGG ranking

A fragment of network

DMR

Method,
parameters

Summarize for G, compare methods

Fig. 2: The flowchart of the proposed framework.



(a) The absolute performance in
terms of MDMR.

(b) The relative performance of
variants that have the same param-
eters except for the sample size
shown relative to the sample size
100.

Fig. 3: Performance of all runs broken by the sample size used
for correlation matrix calculations.

(a) The absolute performance in
terms of MDMR.

(b) The relative performance of
co-location usage relative to the
variant without co-location.

Fig. 4: Co-location usage.

Figure 3b compares identical variants directly and thus isolates
the effect of the sample size on performance. The difference
in sample size was statistically significant (p-value < 0.001)
when compared to the baseline sample size of 100 samples,
which aligns with the hypothesis that sample size matters.

B. Co-location

Since closer genes are more likely to have a common
function than more distant genes, the co-location of two genes
might improve the method’s performance. First, we establish
the advantages of the co-location usage in Figure 4, where
variants with a co-location threshold of 10,000 bps are used,
and only the chromosome number is used - i.e., two genes
are considered to be co-located if they are on the same
chromosome and their position is less than 10,000 bps apart.
The effect of the co-location is small but significant (p-value
< 0.001).

The distance threshold up to which two genes should
be considered co-located is not a priori obvious — a co-
location thresholds of 5,000 bps, 10,000 bps, 100,000 bps, and
1,000,000 bps were tested together with the unlimited variant
(denoted as the inf threshold; genes are considered colocated if
they are on the same chromosome) as shown in Figure 5. The
methods’ performance was the best for the co-location distance
threshold of 1,000,000 and this difference was statistically
significant when compared to the baseline with a co-location
distance threshold of 10,000 (p-value < 0.001) established

(a) The absolute performance in
terms of MDMR.

(b) The relative performance to
the co-location distance threshold
10,000.

Fig. 5: Co-location distance.

(a) The absolute performance in
terms of MDMR.

(b) The relative performance of
using the most specific chromo-
some location compared to using
the information about a chromo-
some only.

Fig. 6: Co-location determination type.

above. This is in line with our hypothesis that knowledge of
gene co-location improves the gene annotation. We explain
the high location threshold value by saying that completeness
prevails over accuracy (despite decreasing relevance, it is
better to consider even distant genes correlated).

Last but not least, we examine whether there is any advan-
tage to using the scaffold information for location specification
if it is available — only genes that share the same scaffold
and are within the threshold distance apart are considered to be
co-located. Such co-location definition was found to perform
marginally worse compared to the default variant as shown
in Figure 6 except for the inf threshold where the scaffold
information effectively limits the threshold and thus, it has a
less negative impact on the performance and thus seemingly
improves the performance.

C. Rankers

The most important parameter of the presented method is
the ranker and the aggregation function that produces the final
ranking of candidates. For both the corr and p-value rankers,
several aggregation functions were tested — the mean, min-
imum, maximum and several percentiles: {0.1%, 0.5%, 1%,
5%, 10%, 25%, 50%, 75%, 95%, 99%, 99.5%, 99.9%}. Note
that the corr ranker with a minimum for the aggregation func-
tion leads to degenerate results when all function candidates
receive the same rank and is only kept for completeness. The
most suitable aggregation functions for the corr ranker are
higher percentiles, with the optimum being at 95%. However,



(a) The absolute performance in terms of MDMR.

(b) The relative performance w.r.t the mean p-value ranker.

Fig. 7: Ranker and aggregation function variants.

the p-value ranker leads to slightly better performance on
average with the mean aggregation function as shown in
Figure 7b; this performance gain compared to other ranker
variants was statistically significant using Wilcoxon signed-
rank test with p-value < 0.001 for all comparison which
confirms that the treatment of correlation thresholds in the
algorithm matters. Also, the p-value rankers were generally
performing better than corr rankers for the same sample sizes
and co-location usage as determined by a paired Wilcoxon
signed-rank test over the pairs where the best performing
variant over available quantile functions for each of the rankers
was selected (p-value < 0.001).

Overall ranking

The list of the top ten configurations is shown in Table
II. The primary performance measure was the MDMR; the
mean minimum rank (MMR) was used as the secondary
performance measure. The best overall configuration is the
mean p-value ranker with the usage of co-location information.
The method’s performance is less sensitive to the exact value
of the co-location distance threshold than the ranker selection;

nevertheless, the final recommendation is to use the threshold
set to 100,000 bps.

However, this recommendation is not universal and depends
on the sample size used for correlation matrix calculation;
higher quantile aggregation functions and the p-value ranker
are more robust for smaller sample sizes, as shown in Figure 8.
Even though the q75 p-value and median p-value rankers led to
slightly better results for sample size 20 and 50, respectively,
the mean p-value ranker is still recommended as the gains of
the other two are rather small, and the mean p-value ranker
behaves well for all the sample sizes unlike the named two
that start to behave much worse for bigger samples.

D. Practical significance

We have already shown that the proposed methods are
statistically significantly better than random. Their MDDMRs
(when compared with the random baseline) are strictly nega-
tive. However, the absolute size of MDDMRs is far from its
ideal value, which approaches half of the mean number of
KEGG pathways considered. This value is 186 in our case.
In order to assess the practical significance of the general
application of the GBA principle, we offer also additional



Fig. 8: The performance of a selected subset of rankers changing with increasing sample size.

MDMR MMR ranker co-location dist. threshold sample size

0 -42.90 38.47 mean p-value yes 100,000 10000
1 -42.69 38.40 mean p-value yes 100,000 1000
2 -42.33 38.94 mean p-value yes 1,000,000 10000
3 -42.13 38.93 mean p-value yes 1,000,000 1000
4 -41.67 39.62 q95 corr. yes 100,000 10000
5 -41.65 39.35 mean p-value yes 10,000 10000
6 -41.63 39.67 q95 corr. yes 1,000,000 10000
7 -41.48 40.01 q25 p-value yes 100,000 10000
8 -41.41 39.32 mean p-value yes 10,000 1000
9 -41.40 39.60 mean p-value yes 5,000 10000
- 0.01 69.08 random — — —

TABLE II: The top ten over all evaluated parameter combinations and sample sizes.

quality measures: 1) the percentage of genes whose first
annotation is right, 2) the percentage of genes that contain
a true KEGG annotation in top 10 annotations assigned.

The percentage of genes whose first annotation is right for
the best method from Table II averaged over individual runs
is 17.65% compared to 1.42% of the random method. When
considering the first ten annotations, the best method leads to
at least o acccne correct annotation in 45.48% genes, while the
random method only in 12.42% genes (again averaged over all
the runs). Figure 9 illustrates the difference in minimum rank
distribution for the best and the random methods.

The supplementary measures suggest that the methods
demonstrate reasonable general practical applicability. It is
expected that this applicability will grow in studies dealing
with biologically homogeneous sets of samples and targeting
specific terms (e.g., diseases related to the samples under
consideration). This is in line with the previous observations
that co-expression patterns are tissue-dependent [27].

VI. CONCLUSION

The functional annotation of genes is very important for
biological and medical applications; however, functional an-
notations are sometimes lacking. The functional annotation

Fig. 9: The distribution of minimum ranks of correct annota-
tions across genes for the best and random method.

for genes can be derived using the co-expression networks
from related genes. The described method produces rank-
ings of available annotation candidates for further biological
evaluation. The KEGG annotations of genes were used to
evaluate the performance of discussed methods. It was shown
that the guilt-by-association principle can be used for gene



annotation as the rankings produced using such approach
were statistically significantly better than random rankings.
Furthermore, it was shown that larger sample sizes and co-
location information improves the performance of the gene
annotation. The multiple threshold variant denoted as p-value
ranker was also shown to perform statistically significantly
better compared to a single correlation threshold. From the
evaluated configurations of the proposed method, the variant
with mean p-value ranker with co-location information is rec-
ommended as the default configuration. In terms of practical
significance, this method yields a correct annotation within
much fewer candidates than a random ranking would produce.
Still, the annotations proposed through correlation networks
should be considered as candidate terms rather than plausible
annotation terms.
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