Efficient Mining under Flexible Constraints
through Several Datasets

Arnaud Soulet, Jifi Kléma, and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen
Campus Coéte de Nacre, F-14032 Caen Cédex France
{Forename.Surname}@info.unicaen.fr

Abstract. Mining patterns under many kinds of constraints is a key point
to successfully get new knowledge. In this paper, we propose an efficient
new algorithm Music-DFS which soundly and completely mines patterns
with various constraints from large data and takes into account external
data represented by several heterogeneous datasets. Constraints are freely
built of a large set of primitives and enable to link the information scat-
tered in various knowledge sources. Efficiency is achieved thanks to a new
closure operator providing an interval pruning strategy covering in depth
the search space. A genomic case study shows both the effectiveness of
our approach and the added-value of background knowledge such as free
texts or gene ontologies in discovery of meaningful patterns.

1 Introduction

In current scientific, industrial or business data mining applications, the critical
need is not to generate data, but to derive knowledge from huge and heteroge-
neous datasets produced at high throughput. Putting all this data together has
become a pressing need for developing environments and tools able to explore
and discover new highly valuable knowledge. This involves different challenges,
like designing efficient tools to tackle large amount of data and the discovery of
patterns of a potential interest for the user through several datasets. By reducing
the number of patterns extracted to those of a potential interest given by the
user, constraints provide focus on the most promising knowledge. Furthermore,
when constraints can be pushed deep inside the mining algorithm, performance
is improved, thus making the mining task computationally feasible and resulting
in a human-workable output.

This paper addresses the issue of efficient mining under flexible constraints
from large binary data combined with several heterogeneous external datasets
synthetizing background knowledge (BK). Large datasets are characterized mainly
by a large number of columns (i.e., items). This characteristic often encountered
in a lot of domains (e.g., bioinformatics, text mining) represents a remarkable
challenge. Usual algorithms show difficulties in running on this kind of data due
to the exponential search space growth with the number of items. Known level-
wise algorithms can fail in mining frequent or constrained patterns in such data [5].
On top of that, the user often would like to integrate BK in the mining process

in order to focus on the most plausible patterns. BK is available in relational and
literature databases, ontological trees and other sources. Nevertheless, mining in
a heterogeneous environment allowing a large set of descriptions at various levels
of detail is highly non-trivial. This paper solves the problem by pushing user-
defined constraints that may stem both from the mined binary data and the BK
summarized in similarity matrices or textual files.

The contribution of this paper is twofold. First we provide an efficient new
algorithm Music-DFS which soundly and completely mines constrained patterns
from large data and takes into account external data (i.e., several heterogeneous
datasets). Except for specific constraints for which tricks like the transposition
of data [8, 5] or the use of the extension [4] can be used, levelwise approaches
cannot tackle large data due to the huge number of candidates. On the contrary,
Music-DFs is based on a depth first search strategy. The key idea is to use a new
closure operator enabling an efficient interval pruning strategy (see Section 3).
In [3], the authors also benefit from intervals to prune the search space, but
their approach is restricted to the conjunction of one monotone constraint and
one anti-monotone constraint. The output of MUSIC-DFS is an interval condensed
representation: each pattern satisfying the given constraint appears once in the
collection of intervals only. Second, we provide a generic framework to mine pat-
terns with a large set of constraints through several heterogeneous datasets like
texts or similarity matrices. It is a way to take into account the BK. Section 4
depicts a genomic case study. The biological demands require to mine the expres-
sion data with constraints concerning complex relations represented by free texts
and gene ontologies. The discovered patterns are likely to encompass interesting
and interpretable knowledge.

This papers differs for a double reason from our work in [11]. First, the frame-
work is extended to external data. Second, MUSIC-DFS is deeply different from the
prototype used in [11]: MUSIC-DFS integrates primitives to tackle external data
and thanks to its strategy to prune the search space (new interval pruning based
on prefix-free patterns, see Section 3), it is able to mine large data. Section 4
demonstrates the practical effectiveness of MUSIC-DFS in a genomic case study
and shows that other prototypes (including the prototype presented in [11]) fail.
To the best of our knowledge, there is no other constraint-based tool to efficiently
discover patterns from large data under a broad set of constraints linking the
information distributed in various knowledge sources.

This paper is organized as follows. Section 2 defines our framework to mine
patterns satisfying constraints defined over several kinds of datasets. In Section 3,
we present the theoretical essentials that underlie the efficiency of MusiC-DFS and
we provide its main features. Experiments showing the efficiency of MUSIC-DFS
and the cross-fertilization between several sources of information related to the
genomic area are given in Section 4.

2 Defining Constraints Through Several Datasets

Usual data-mining tasks can rarely be represented by a single binary dataset.
Often it is necessary to connect knowledge scattered in several heterogeneous

sources. In constraint-based mining, the constraints should effectively link dif-
ferent datasets and knowledge types. For instance, in the domain of genomics,
biologists are interested in constraints both on synexpression groups and com-
mon characteristics of the genes and/or biological situations concerned. Such
constraints require to tackle both transcriptome data (often provided in a trans-
actional format) and literature databases. This section presents our framework
(and the declarative language) enabling the user to set varied and meaningful
constraints. We describe our framework by starting from a genomic example.
Let us consider the genomic mining context given in Figure 1. Firstly, this
context is made up of a boolean dataset also called internal data (or transcriptome
data) where the items correspond to genes, the transactions represent biological
situations. Secondly, external data (a similarity matrix and textual resources) are
considered. They summarize the BK that contains various information on items
(i-e., genes). This knowledge is transformed into a similarity matrix and a set of
texts. Each field of the triangular matrix s;; € [0, 1] gives a similarity measure
between the items i and j (or transactions respectively). The textual dataset
provides a description of genes. Each row of this dataset contains a list of phrases
characterizing the given gene. The mined patterns are composed of items of the
internal data, the external data are used to further specify constraints in order to
focus on meaningful patterns. In other words, the constraints may stem from all
the datasets (see the example of ¢ in Figure 1, Section 4 provides another ¢’).

Internal data External data

Similarity matrix Textual data
|[AB C DE
07 7 7 .2
.06 7 7

.07 .05 .

.03

Boolean matrix D
Situations Genes
S1 A
So B
S3 A B
Sq A B

’metal ion binding’ ’transcription factor’

‘serine-type peptidase activity’ 'proteolysis’
'DNA binding’ 'metal ion binding’

ATP binding’ ’nucleotide binding’
‘proteolysis’

ATP binding’ 'metal ion binding’

S
T QwWe

HoQW >

N Qo ol

‘freq, length,... ‘ sumsim, svmsim,... ‘ regexp

q¢(X) = freq(X) x length(X) > 24 (a)
Alength(regexp(X, xribosomx’, TEXT terms)) < 1 (b)
A svsim(X, TEXT)/(svsim(X, TEXT) 4+ mvsim(X, TEXT)) > 0.7 (c)
A sumsim(X, TEXT)/svsim(X, TEXT) > 0.025 (d)

Fig. 1. Example of a toy (genomic) mining context and a constraint.

Let 7 be a set of items, a pattern is a non-empty subset of Z. D is a boolean
matrix composed of patterns usually called transactions. The constraint-based
mining task aims to discover all the patterns present in D and satisfying a con-
straint g. A pattern X is present in D whenever it is included in one transaction
of D at least. One originality of our framework lies in its flexibility. Constraints
are freely built of a large set of primitives representing an integrative, iterative
and rich query language.

Table 1 provides the meaning of the primitives involved in ¢ and also the con-
straints used in Section 4. As primitives on external data are derived from different

datasets, the dataset makes another parameter of the primitive (it is not present
in Table 1 to alleviate the writing). The first part (a) of ¢ addresses the internal
data and means that the biologist is interested in patterns having a satisfactory
size (i.e., a minimal area). Indeed, area(X) = freq(X) x length(X) is the prod-
uct of the frequency of X and its length and means that the pattern must cover
a minimum number of situations and contain a minimum number of genes. The
other parts deal with the external data: (b) is used to discard ribosomal patterns
(one gene exception per pattern is allowed), (c¢) to avoid patterns with prevailing
items of an unknown function and (d) to ensure a minimal average similarity.
Table 1 also indicates the values of these primitives in the context of Figure 1.
Our framework supports a large set of primitives, other examples of primitives are
{N V0, <, <, C, S+, —, X, /, sum, max, min, U, N, \}. The only property which
is required on the primitives to belong to our framework is a property of mono-
tonicity according to each variable of a primitive [11]. The constraints of this
framework are called primitive-based constraints. Let us recall that the primitives
and the constraints defined in [11] only address one boolean data set.

primitives values
Boolean matrix
freq(X) frequency of X freq(ABC) =2
length(X) length of X length(ABC) = 3

Textual data

regexp(X,RE) |itemsof X whose associated phrases match the|regexp(ABC, x ion ")

regular expression RE = AC
Similarity matrix
sumsim(X) similarity sum over the set of item pairs of X |sumsim(ABC) = 0.13
svsim(X) number of stated item pairs belonging to X |svsim(ABC) =2
musim(X) number of missing item pairs belonging to X |mvsim(ABC) =1
insim(X, min, max) |number of item pairs whose similarity lies be-|insim(ABC,0.07,1) =
tween min and max 1

Table 1. Examples of primitives and their values in the data mining context of Figure 1.

3 Music-DFs Tool

This section presents the MUSIC-DFS tool (Mining with a User-Specifled Constraint,
Depth-First Search approach) which benefits from the primitive-based constraint
presented in the previous section. Efficiency is achieved thanks to the exploitation
of the primitive and constraint properties. We start by giving the key idea of the
safe pruning process based on intervals.

3.1 Main features of the interval pruning

We give the intuition of the pruning process performed by MUsic-DFs. The key
idea is to exploit properties of the monotonicity of the primitives (see Section 2)
on the bounds of intervals to prune them. This new kind of pruning is called
interval pruning. Given two patterns X C Y, the interval [X,Y] corresponds to

the set {Z CZ | X C Z C Y}. Figure 2 depicts an example with the interval
[AB, ABCD] and the values of the primitives sumsim and svsim.

AB 0.07/1 <=— sumsim(AB)/svsim(AB)
ABCfg/ngBD ?/?

ABCD g5/

Fig. 2. Tllustration of the interval pruning.

Assume the constraint sumsim(X)/svsim(X) > 0.25. As the values associ-
ated to the similarities are positive, sumsim(X) is an increasing function accord-
ing X. Thus sumsim(ABCD) is the highest sumsim value for the patterns in
[AB, ABCD]. Similarly, all the patterns of this interval have a higher svsim(X)
value than svsim(AB). Thereby, each pattern in [AB, ABC D] has its average sim-
ilarity lower or equal than sumsim(ABCD)/svsim(AB) = 0.2/1. As this fraction
does not exceed 0.25, no pattern of [AB, ABCD] can satisfy the constraint and
this interval can be pruned. We say that this pruning is negative because no pat-
tern satisfies the constraint. In the same way, if the values of proper combinations
of the primitives on the bounds of an interval [X, Y] show that all the patterns in
[X, Y] satisfy the constraint, then [X, Y] is also pruned and this pruning is named
positive. For instance, assuming that sumsim(AB)/svsim(ABCD) > 0.02, then
all the patterns in [AB, ABCD] satisfy the constraint.

In a more formal way, this approach is performed by two interval pruning
operators |.] and [.] introduced in [11] but only for primitives handling boolean
data. The main idea of these operators is to recursively decompose the constraint
to take into account the monotone properties of the primitives and then to safely
negatively or positively prune intervals as depicted above. This process straight-
forwardly works with all the primitives tackling several kinds of datasets, this
highlights the generic properties of our framework. Thereby, all the parts of the
constraint ¢ are pushed into the mining step. The next section indicates how the
intervals are built.

3.2 Interval condensed representation

As indicated in the introduction, levelwise algorithms are not suitable to mine
datasets with a large number of items due to the huge number of candidates
growing exponentially according to the number of items. We adopt a depth-first
search strategy instead to enumerate the candidate patterns and to avoid subse-
quent memory failures. We introduce a new and specific closure operator based on
a prefix ordering relation <. We show that this closure operator is on the core of
the interval condensed representation (Theorem 1) leading to an efficient pruning
strategy covering in depth the search space.

The prefix ordering relation < takes into account an arbitrary order over items
A< B< (C<...asdonein [10]. We say that an ordered pattern X = x125... 2,

(i.e., Vi < j, we have z; < x;) is a prefix of an ordered pattern ¥ = y1y2...Ym
and note X <Y iff we have n < m and Vi € {1,...,n}, z; = y;. For instance,
ADC A AD because ADC = ACD and AD is not a prefix of ACD.

Definition 1 (Prefix-closure). The prefiz-closure of a pattern X, denoted cl<(X),
is the pattern {a € Z|3Y C X such that Y <Y U{a} and freq(Ya) = freq(Y)}.

The pattern cl<(X) gathers together the items occurring in all the transac-
tions containing ¥ C X such that Y is a prefix of Y U {a}. The fixed points of
operator cl< are named the prefiz-closed patterns. Let us illustrate this definition
on our running example (cf. Figure 1). The pattern ABC' is not a prefix-closed
pattern because ABC is a prefix of ABCD and freq(ABCD) = freq(ABC). We
straightforwardly deduce that any pattern and its prefix-closure have the same fre-
quency. For instance, as cl<(ABC) = ABCD, freq(ABC) = freq(ABCD) = 2.
We show now the property of closure of cl<:

Property 1 (Closure operator) The prefiz-closure operator cl< is a closure
operator.

Proof. Ertensivity: Let X be a pattern and a € X. We have {a} C X and ob-
viously, a < a and freq(a) = freq(a). Then, we obtain that a € cl<(X) and
cls is extensive. Isotony: Let X C Y and a € cl<(X). There exists Z C X such
that Z < Za and freq(Za) = freq(Z). As we also have Z CY (and freq(Za) =
freq(Z)), we obtain that a € cl<(Y") and conclude that cl<(X) C cl<(Y). Idem-
potency: Let X be a pattern. Let a € cl<(cl<(X)). There exists Z C cl<(X) such
that freq(Za) = freq(Z) with Z < Za. As Z C cl<(X), for all a; € Z, there is
Z; C X such that freq(Z;a;) = freq(Z;) with Z; < Z;a;. We have | J; Z; < |, Zia
and freq(J; Zi) = freq(U; Zia) (because freq(|J; Zi) = freq(Z)). As the pat-
tern |J, Z; C X, a belongs to cl<(X) and then, cl< is idempotent. O

Property 1 is important because it enables to infer results requiring the prop-
erties of a closure operator. First, this new prefix-closure operator designs equiva-
lence classes through the lattice of patterns. More precisely, two patterns X and
Y are equivalent iff they have the same prefix-closure (i.e., cl<(X) = cl<(Y)). Of
course, as cl< is idempotent, the maximal (w.r.t. C) pattern of a given equiva-
lence class of X corresponds to the prefix-closed pattern cl<(X). Conversely, we
call prefiz-free patterns the minimal (w.r.t. C) patterns of equivalence classes. Sec-
ond, closure properties enable to prove that the prefix-freeness is an anti-monotone
constraint (see Property 2 in the next section).

Contrary to the equivalence classes defined by the Galois closure [2, 9], equiv-
alence classes provided by cl< have a unique prefix-free pattern. This allows to
prove that a pattern belongs to one interval only and provides the important
result on the interval condensed representation (cf. Theorem 1). This result can-
not be achieved without the new closure operator. Lemma 1 indicates that any
equivalence class has a unique prefix-free pattern:

Lemma 1 (Prefix-freeness operator). Let X be a pattern, there exists an
unique minimal (w.r.t. C) pattern, denoted fr<(X), in its equivalence class.

Proof. Supposing that X and Y are two minimal patterns of the same equivalence
class: we have cl<(X) = clz(Y). As X and Y are different, there exists a € X
such that ¢ € Y and a < min<{b € Y\X} (or we invert X and Y). As X is
minimal, no pattern Z C X NY satisfies that Z < Za and freq(Za) = freq(2).
Besides, for all Z such that YNX C Z C Y, we have Z A Za because a is smaller
than any item of Y\ X. So, a does not belong to cl<(Y") and then, we obtain that
cl<(X) # cl<(Y). Thus, we conclude that any equivalence class exactly contains
one prefix-free pattern. O

Lemma 1 means that the operator fr< links a pattern X to the minimal pattern
of its equivalence class, i.e. fr<(X). X is prefix-free iff fr<(X) = X. Any equiva-
lence class corresponds to an interval delimited by one prefix-free pattern and its
prefix-closed pattern (i.e., [fr<(X), cl<(X)]). For example, AB (resp. ABCD) is
the prefix-free (resp. prefix-closed) pattern of the equivalence class [AB, ABCD].

Now let us show that the whole collection of the intervals formed by all the
prefix-free patterns and their prefix-closed patterns provides an interval condensed
representation where each pattern X is present only once in the set of intervals.

Theorem 1 (Interval condensed representation). Each pattern X present
in the dataset is included in the interval [fr<(X), cl<(X)]. Besides, the number
of these intervals is less than or equal to the number of patterns.

Proof. Let X be a pattern and R = {[fr<(X), cl<(X)]|freq(X) > 1}. Lemma 1
proves that X is exactly contained in [fr<(X), cl<(X)]. The latter is unique. As X
belongs to R by definition, we conclude that R is a representation of any pattern.
Now, the extensivity and the idempotency of prefix-closure operator cl< ensure
that |R| < [{X C Z such that freq(X) > 1}|. Thus, Theorem 1 is right. O

In the worst case the size of the condensed representation is the number of
patterns (each pattern is its own prefix-free and its own prefix-closed pattern).
But, in practice, the number of intervals is low compared to the number of patterns
(in our running example, only 23 intervals sum up the 63 present patterns).

The condensed representation highlighted by Theorem 1 differs from the con-
densed representations of frequent patterns based on the Galois closure [2, 9]: in
this last case, intervals are described by a free (or key) pattern and its Galois
closure and a frequent pattern may appear in several intervals. We claim that the
presence of a constraint pattern in a single interval brings meaningful advantages:
the mining is more efficient because each pattern is tested at most once and this
improves the synthesis of the output of the mining process and facilitates its anal-
ysis by the end-user. The next section shows that by combining this condensed
representation and the interval pruning operators, we get an interval condensed
representation of primitive-based constrained patterns.

3.3 Mining primitive-based constraints in large datasets

When running, MUSIC-DFS enumerates all the intervals sorted in a lexicographic
order and checks whether they can be pruned as proposed in Section 3.1. The
enumeration benefits from the anti-monotonicity property of the prefix-freeness

(cf. Property 2). The memory requirements only grow linearly with the number
of items and the number of transactions.

Property 2 The prefix-freeness is an anti-monotone constraint (w.r.t. C).

The proof of Property 2 is very similar with those of the usual freeness [2, 9].
In other words, the anti-monotonicity ensures us that once we know that a pattern
is not prefix-free, any superset of this pattern is not prefix-free anymore [1, 7].
Algorithms 1 and 2 give the sketch of MUSIC-DFS.

Algorithm 1 GLOBALSCAN
Input: A prefix-pattern X, a primitive based constraint ¢ and a dataset D
Output: Interval condensed representation of constrained patterns having X as prefix
1: if ~PrefixFree(X) then return) // anti-monotone pruning
2: return LoCALSCAN([X, cl<(X)],q,D) // local mining
UU{GLOBALSCAN(Xa,q,D)la € Z Aa > max< X} // recursive enumeration

Algorithm 2 LOCALSCAN

Input: An interval [X, Y], a primitive based constraint ¢ and a dataset D
Output: Interval condensed representation of constrained patterns of [X, Y]

1: if |¢|(X,Y) then return {[X,Y]} // positive interval pruning

2: if =[¢](X,Y) then return // negative interval pruning

3: if ¢(X) then return [X, X] U{J{LocALScAN([Xa,cl<(Xa)],q,D)la € Y\X}
4: return | J{LocALScAN([Xa,cl<(Xa)],q,D)la € Y\X} // recursive division

Music-DFs scans the whole search space by running GLOBALSCAN on each
item of Z. GLOBALSCAN recursively performs a depth-first search and stops when-
ever a pattern is not prefix-free (Line 1, GLOBALSCAN). For each prefix-free pat-
tern X, it computes its prefix-closed pattern and builds [X, cl<(X)] (Line 2,
GLOBALSCAN). Then, LOCALSCAN tests this interval by using the operators |.]
and [.| informally presented in Section 3.1. If the interval pruning can be per-
formed, the interval is selected (positive pruning, Line 1 from LOCALSCAN) or
rejected (negative pruning, Line 2 from LOCALSCAN). Otherwise, the interval is
explored by recursively dividing it (Line 3 or 4 from LOCALSCAN). The decom-
position of the intervals is done so that each pattern is considered only once. The
next theorem provides the correctness of MUSIC-DFS:

Theorem 2 (Correctness). MUSIC-DFS mines soundly and completely all the
patterns satisfying q by means of intervals.

Proof. Property 2 ensures us that MUSIC-DFS enumerates all the interval con-
densed representation. Thereby, any pattern is considered (Theorem 1) individu-
ally or globally with the safe pruning stemmed from to the interval pruning (see
Section 3.1). O

4 Mining Constraint Patterns from Genomic Data

This section depicts the effectiveness of our approach on a genomic case study. We
experimentally show two results. First, the usefulness of the interval pruning strat-
egy of MUSIC-DFs (the other prototypes fail for such large data, cf. Section 4.2).
Second, BK enables to focus automatically on the most plausible candidate pat-
terns (cf. Section 4.3). This underlines the need to mine constrained patterns by
taking into account external data.

4.1 Gene expression data and background knowledge

In this experiment we deal with the SAGE (Serial Analysis of Gene Expres-
sion) [12] human expression data downloaded from the NCBI website (www.ncbi.
nlm.nih.gov). The final binary dataset contains 11082 genes tested in 207 bio-
logical situations, each gene can be either over-expressed in the given situation
or not. The biological details regarding gene selection, mapping and binarization
can be seen in [6].

BK available in literature databases, biological ontologies and other sources
is used to help to focus automatically on the most plausible candidate patterns.
We have experimented with the gene ontology (GO) and free-text data. First,
the available gene databases were automatically searched and the records for each
gene were built (around two thirds of genes have non-empty records, there is
no information available for the rest of them). Then, various similarity metrics
among the gene records were proposed and calculated. The gene records were also
simplified to get a condensed textual description. The details on text mining, gene
ontologies and similarities are in [6].

4.2 Efficiency of MUSIC-DFS

Let us show the necessity of the depth-first search and usefulness of the interval
pruning strategy of MusiC-DFS. All the experiments were conducted on a 2.2 GHz
Pentium IV processor with Linux operating system and 3GB of RAM memory.
The first experiment highlights the importance of the depth-first search. We
consider the constraint addressing patterns having an area > 70 (the minimal
area constraint has been introduced in Section 2) and appearing at least 4 times
in the dataset. MUSIC-DFS only spends 7sec to extract 212 constrained patterns.
In comparison, for the same binary dataset, the levelwise approach! presented
in [11] fails after 963sec whenever it contains more than 3500 genes. Indeed, the
candidate patterns necessary to build the output do not fit in memory.
Comparison with prototypes coming from the FIMI repository (fimi.cs.
helsinki.fi) shows that efficient implementations like KDCI, LCM (ver. 2),
COFT or Borgelt’s APRIORI fail with this binary dataset to mine frequent pat-
terns occuring at least 4 times. Borgelt’s ECLAT and AFOPT which are depth-first
approaches, are able to mine with this frequency constraint. But they require a

1 We do not use external data because this version does not deal with external data.

post-processing step for taking into account other constraints than the frequency
(e.g., area, similarity-based constraints).

The next experiment shows the great role of the interval pruning strategy.
For this purpose, we compare MUSIC-DFS with its modification that does not
prune. The modification, denoted MUSIC-DFS-FILTER, mines all the patterns that
satisfy the frequency threshold first, the other primitives are applied in the post-
processing step. We use two typical constraints needed in the genomic domain
and requiring the external data. These constraints and the time comparison be-
tween MUSIC-DFS and M USIC-DFS-FILTER are given in Figure 3. The results show
that post-processing is feasible until the frequency threshold generates reasonable
pattern sets. For lower frequency thresholds, the number of patterns explodes
and large intervals to be pruned appear. The interval pruning strategy decreases
runtime and scales up much better than the comparative version without interval
pruning and MUSIC-DFS becomes in the order of magnitude faster.

10000 T T 100000 T
Music-dfs ——

Music-dfs-filter ---x---

Music-dfs ——
Music-dfs-filter ---x---

/ 10000 £ x A
1000 ¢ E /

1000 | / p

time[s]

100 £

time[s]

100 | / E

10 |

1 1 1 1 1 1 1 1 1 1
7 6 5 4 7 6 5 4

frequency threshold frequency threshold

Fig. 3. Efficiency of interval pruning with decreasing frequency threshold. The left im-
age deals with the constraint freq(X) > thres A lenght(X) > 4 A sumsim(X)/svsim(X) >
0.9 A svsim(X)/(svsim(X) + mvsim(X)) > 0.9. The right image deals with the constraint
freq(X) > thres A length(regexp(X,’ *ribosom=’,G0_terms)) = 0.

4.3 Use of background knowledge to mine plausible patterns

This genomic case study demonstrates that constraints coming from the BK can
reduce the number of patterns, they can express various kinds of interest and the
patterns that tend to reappear are likely to be recognized as interesting by an
expert. Such an approach requires a tool dealing with external data.

Let us consider all the patterns having a satisfactory size which is translated
by the constraint area > 202. We get nearly half a million different patterns that
are joined into 37852 intervals. Although the intervals prove to provide a good

% This threshold has been settled by statistical analysis of random datasets having the
same properties as the original SAGE data. First spurious patterns start to appear
for this threshold area.

condensation, the manual search through this set is obviously infeasible as the
interpretation of patterns is not trivial and asks for frequent consultations with
medical databases. The biologists prefer sets with tens of patterns/intervals only.

Increasing the threshold of the area constraint to get a reasonable number of
patterns is rather counter-productive. The constraint area > 75 led to a small
but uniform set of 56 patterns that was flooded by the ribosomal proteins which
generally represent the most frequent genes in the dataset. Biologists rated these
patterns as valid but uninteresting.

The most valuable patterns expected by biologists have non-trivial size con-
taining genes and situations whose characteristics can be generalized, connected,
interpreted and thus transformed into knowledge. To get such patterns, con-
straints based on the external data have to be added to the minimal area constraint
just like in the constraint ¢ given in Section 2. It joins the minimal area constraint
with background constraints coming from the NCBI textual resources (gene sum-
maries and adjoined PubMed abstracts). There are 46671 patterns satisfying the
minimal area constraint (the part (a) of the constraint ¢), but only 9 satisfy g.
This shows the efficiency of reduction of patterns brought by the BK.

A cross-fertilization with other external data is obviously favourable. So, we
use the constraint ¢’ which is similar to ¢, except that the functional Gene Ontol-
ogy is used instead of NCBI textual resources and a similarity constraint is added
(part (e) of ¢').

¢ (X) = area(X) > 24 (a)
Alength(regerp(X, sxribosom*’,G0_terms)) < 1 (b)
A svsim(X,G0)/(svsim (X, GO) + mvsim (X, G0)) > 0.7 (c)
A sumsim(X,G0)/svsim(X,G0) > 0.025 (d)
Ainsim(X,0.5,1,G0)/svsim (X, G0) > 0.6 (e)

Only 2 patterns satisfy ¢’. A very interesting observation is that the pattern®
that was identified by the expert as one of the “nuggets” provided by ¢ is also
selected by ¢’. This pattern can be verbally characterized as follows: it consists of
4 genes that are over-expressed in 6 biological situations, it contains at most one
ribosomal gene, the genes share a lot of common terms in their descriptions as well
as they functionally overlap, at least 3 of the genes are known (have a non-empty
record) and all of the biological situations are medulloblastomas which are very
aggressive brain tumors in children. The example demonstrates two different ways
to reach a compact and meaningful output that can be easily human surveyed.

5 Conclusion

Knowledge discovery from a large binary dataset supported by heterogeneous BK
is an important task. We have proposed a generic framework to mine patterns with
a large set of constraints linking the information scattered in various knowledge

3 The pattern consists of 4 genes KHDRBS1 NONO TOP2B FMRI over-expressed
in 6 biological situations BM_P019 BM_ P494 BM_ P608 BM_P301 BM_ H275
BM_HS876. BM stands for brain medulloblastoma.

sources. We have presented an efficient new algorithm MUsIC-DFS which soundly
and completely mines such constrained patterns. Effectiveness comes from an in-
terval pruning strategy based on prefix free patterns. To the best of our knowledge,
there is no other contraint-based tool able to solve such constraint-based tasks.

The genomic case study demonstrates that our approach can handle large
datasets. It also shows practical utility of the flexible framework integrating het-
erogeneous knowledge sources. The language of primitives and compounds applied
to a wide spectrum of genomic data results in constraints formalizing viable notion
of interestingness.

Acknowledgements. The authors thank the CGMC Laboratory (CNRS UMR 5534, Lyon) for
providing the gene expression database and many valuable comments. This work has been partially
funded by the ACI “masse de données” (French Ministry of research), Bingo project (MD 46, 2004-07).

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 432—444, 1994.

[2] J. F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7(1):5-22, 2003.

[3] C. Bucila, J. Gehrke, D. Kifer, and W. M. White. Dualminer: A dual-pruning
algorithm for itemsets with constraints. Data Min. Knowl. Discov., 7(3):241-272,
2003.

[4] C. Hébert and B. Crémilleux. Mining frequent d-free patterns in large databases.
In A. Hoffmann, H. Motoda, and T. Scheffer, editors, proceedings of the 8th Inter-
national Conference on Discovery Science (DS’05).

[5] B. Jeudy and F. Rioult. Database transposition for constrained (closed) pattern
mining. In KDID, volume 3377 of Lecture Notes in Computer Science, pages 89-107.
Springer, 2004.

[6] J. Kléma, A. Soulet, B. Crémilleux, S. Blachon, and O. Gandrillon. Mining plausible
patterns from genomic data. In CBM.S 2006 (to appear), Salt Lake City, Utah, 2006.

[7] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241-258, 1997.

[8] F. Pan, G. Cong, A. K. H. Tung, Y. Yang, and M. J. Zaki. CARPENTER: finding
closed patterns in long biological datasets. In proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’03), pages
637-642, Washington, DC, USA, 2003. ACM Press.

[9] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. Lecture Notes in Computer Science, 1540:398-416,
1999.

[10] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In ICDE, pages 433-442. IEEE Computer Society, 2001.

[11] A. Soulet and B. Crémilleux. An efficient framework for mining flexible constraints.
In PAKDD, volume 3518 of Lecture Notes in Computer Science, pages 661-671.
Springer, 2005.

[12] V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial analysis of gene
expression. Science, 270:484-7, 1995.

