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Abstract: The Monge-Elkan distance is a straightforward yet pop-

ular distance measure used to estimate the mutual similarity of two

sets of objects. It was initially proposed in the field of databases,

and it found broad usage in other fields. Nowadays, it is especially

relevant to the analysis of new-generation sequencing data as it rep-

resents a measure of dissimilarity between genomes of two distinct

organisms, particularly when applied to unassembled reads. This

paper provides an algorithm to calculate the p-value associated with

the Monge-Elkan distance. Given the object-level null distribution,
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2 1 INTRODUCTION

i.e., the distribution of distances between independently and iden-

tically sampled objects such as reads, the method yields the null

distribution of the Monge-Elkan distance, which in turn allows for

calculating the p-value. We also demonstrate an application on se-

quencing data, where individual reads are compared by the Leven-

shtein distance.

Final publication is available from Mary Ann Liebert, Inc.: https://doi.

org/10.1089/cmb.2024.0854.

1 Introduction

The Monge-Elkan similarity was proposed by (Monge and Elkan, 1996). The

paper used the concept to solve the field matching problem, i.e., the problem

of deciding whether two different fields (say, strings) represent the same entity.

For example, John Doe and Doe, John are likely to represent the same per-

son despite different textual representations. The field matching problem often

arises in databases when multiple data sources are combined into a single one.

The paper proposed a simple yet effective recursive algorithm to compare

the fields. Denote the fields RA and RB (see Supplementary Material Table 1

for a summary of notation). Each of the fields is broken into subfields (say, at

positions of spaces), and for each subfield a of RA, the most similar subfield in

RB is assigned. The similarities between such established pairs of subfields are

then averaged to produce the value of similarity between the fields.

Due to the simplicity of the idea, it has found its way into many applica-

tions, especially in the approximate string matching field and related tasks. The

Monge-Elkan distance can be found in a review paper (Cohen et al., 2003) fo-

cusing on name matching. The work (Kaplar et al., 2019) evaluates the Monge-

Elkan distance in the context information extraction from electronic health

https://doi.org/10.1089/cmb.2024.0854
https://doi.org/10.1089/cmb.2024.0854
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records in the Serbian language. Another review paper, (Gali et al., 2016)

finds usage in title matching, where users input text into fields. Further usages

include business process model matching in (Abdelkader, 2018), where the goal

is to find correspondence between activities, and the Monge-Elkan distance is

used together with WordNet. Toponym matching in geography is another field

where the Monge-Elkan distance has been applied (Santos et al., 2018). In this

work, the goal is to identify whether two names refer to the same place. There

are also generalizations of the original paper as in (Jimenez et al., 2009), which

uses generalized arithmetic mean instead of the average.

The Monge-Elkan similarity found its way into bioinformatics and related

fields as well. The Monge-Elkan distance was used as a baseline in the iden-

tification of duplicate biological entities in bioinformatics databases in (Song

and Rudniy, 2010), where the authors used an edit distance based on Markov

random fields. A similar set of authors followed with work (Rudniy et al.,

2014), where the Monge-Elkan distance is evaluated among the set of alter-

native approaches. The work (Yamaguchi et al., 2012) used the Monge-Elkan

distance in the context of biomedical abbreviation clustering. From the bio-

logical databases perspective, the ontology alignment problem is an important

task as well, as many biological data are used in the form of ontologies. (Stoilos

et al., 2005; Cheatham and Hitzler, 2013) use the Monge-Elkan distance as one

of the considered approaches.

(Ryšavý and Železný, 2016, 2019, 2023) used the Monge-Elkan similarity

to develop a distance measure applied in analyzing raw read data. Instead of

fields in database entries, RA and RB represented bags of reads (i.e., multisets)

produced by a sequencing machine for two sequences A and B, so the bag

elements are individual reads. The Monge-Elkan distance then approximates

the Levenshtein distance by (Levenshtein, 1966) between the sequences A and
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B without the need for read data assembly.

A main challenge in the outlined biological use case is the interpretation

of the computed distance values. Relative comparisons are not problematic:

knowing that the read bag distance is, say, 10 means that the original sequences

are more similar than if the distance was 20. However, we also want to be able

to establish whether a particular computed distance between two read bags

indicates similar input sequences rather than random unrelated sequences. As

customary in life sciences, we make the former call if the probability of the latter

case, i.e., the p-value, is smaller than a threshold (e.g., 0.05). Determining the

p-value of the Monge-Elkan distance is, however, not trivial.

Being able to calculate the p-value of the result has a broader impact as its

knowledge is necessary to assess the statistical significance of the result. By

definition, a low p-value means that the result measured is not a random fluke

and is more likely to be reproduced under similar conditions. When the null

distribution of the used statistic is not known, the user can resort to Barnard’s

Monte Carlo sampling (Marriott, 1979), where the statistic values are calculated

from randomly sampled inputs. While this procedure gives an estimate of the

p-value, in many cases, it is computationally very demanding. In such cases, it

may not be feasible to calculate the p-value of rare events, which calls for more

efficient approaches.

The main contribution of this paper is a method for calculating the p-value

for the Monge-Elkan distance. First, we will provide an algorithm for the gen-

eral version, then apply it to the approach presented by (Ryšavý and Železný,

2016, 2019), and then we will discuss drawbacks, limitations, and necessary ap-

proximations involved in the calculation. A minor limitation of the presented

algorithm is that the similarity between the subfields (reads) must have only

a finite set of outcomes, which is true under commonly used measures with



5

limited subfield length. This includes the Levenshtein distance (Levenshtein,

1966), the longest-common-subsequence similarity (Wagner and Fischer, 1974),

Jaro-Winkler similarity (Winkler, 1990), and others. The restriction to finite

domains, together with independence assumptions allows to exploit probability

generating functions well-known in statistics. As a result, the algorithm is able

to calculate the p-value without the need for the standard Barnard’s Monte-

Carlo sampling in (Marriott, 1979) potentially infeasible for large bags RA, RB .

2 Definition of the Problem

Let U be a universe of elements. We assume a distance function dst defined

on pairs of elements of U . We also assume that this distance function has a

finite range, as is the case for distances such as the Levenshtein distance. The

Monge-Elkan distance between two read bags is the average distance from each

element of the first read bag to its closest counterpart in the second read bag.

Definition 1 (Monge-Elkan distance, (Monge and Elkan, 1996)). Let RA, RB

be two bags sampled with replacement from universe U . Then, the Monge-Elkan

distance between RA and RB, denoted Dst(RA, RB), is defined as

Dst(RA, RB) =
1

|RA|
∑
a∈RA

min
b∈RB

dst(a, b), (1)

where dst : U × U 7→ Y is a distance function on U with finite range Y ⊂ R.

For fixed bag sizes |RA| and |RB |, the above quantity has the null distribution

under the null hypothesis that all elements in RA ∪RB are sampled i.i.d. with

replacement from U . The alternative hypothesis states that the bags are similar.

Given a value of Dst(RA, RB), we reject the null hypothesis if the probability

of obtaining that value under the null hypothesis is smaller than a threshold.
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Being able to quantify the null distribution of (1) is crucial in order to

calculate the p-value, which is the probability that a more extreme distance

value is observed. Formally, let d be the Monge-Elkan for two observed read

bags. Then the p-value is the probability that Dst(RA, RB) ≤ d for two bags

RA, RB sampled i.i.d. with replacement from U . Therefore, to get the p-value

from the null distribution, we need only to sum over all smaller distance values.

As mentioned in the introduction, the original paper (Monge and Elkan,

1996) defined the Monge-Elkan similarity rather than the distance. We will pro-

vide the algorithm for the distance version; however, the ideas may be straight-

forwardly translated into a similarity version by swapping the min and max

operators and the sides of the appropriate inequalities.

3 p-value Calculation

First, we can notice that the possible values calculated in (1) are dependent on

the range of dst. Therefore, the null distribution of the Monge-Elkan distance

is dependent on the chosen universe U and distance function dst. As a result,

we cannot precompute a generally applicable null distribution of the Monge-

Elkan distance. A standard approach in such a case would consist in a Monte-

Carlo random sampling (Marriott, 1979) of many pairs of bags RA, and RB

and a consequent evaluation of Dst(RA, RB) allowing the approximation of the

null distribution. In this paper, we will use probability generating functions to

evaluate the null distribution. We will break Formula (1) into smaller pieces

for which we will calculate the null distribution and then combine these null

distributions into the null distribution of Dst.
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3.1 Null Distribution of the min Operation

The innermost part of the calculation in (1) is the dst distance. The null dis-

tribution of dst is assumed to be given. We also assume that the distance has

a finite range as defined in Section 2. The following theorem allows calculating

the null distribution of the minimum operation.

Theorem 1. Let (Ω,≤) be a finite, totally ordered set. Let p : Ω 7→ [0, 1] be

a probability distribution of a discrete random variable. Suppose that S ⊆ Ω is

a bag of i.i.d. samples drawn with replacement from probability distribution p.

Then for any ω ∈ Ω, function q : Ω 7→ [0, 1] defined as

q(ω) =

|S|∑
i=1

(|S|
i

)
· p(ω)i ·

 ∑
{ω′∈Ω :ω′>ω}

p(ω′)

|S|−i

(2)

is the probability of minS = ω. Should the last term of the multiplication be in

the form of 00, then this value is considered 1.

Proof. The proof can be found in Supplementary Material, Sect. 2. The proof

is done by counting for how many elements in S holds that minS = ω.

Corollary 1. Suppose that the values of dst(a, b) are random i.i.d. for fixed a.

Then,

P

(
min
b∈RB

dst(a, b) = d

)
=

|RB |∑
i=1

(|RB |
i

)
·P (dst(a, b) = d)i·P (dst(a, b) > d)|RB |−i

= P (dst(a, b) ≥ d)|RB | − P (dst(a, b) > d)|RB |. (3)

We have to be careful when applying Corollary 1. The distribution of the

distance is calculated for a fixed a. Consider the situation when the universe U =

{0, 0.1, 0.2, . . . , 1.0} and the distance metric is the absolute difference between

two numbers. Then, the null distribution looks different in situations when a =
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0.5 and a = 0. In the first case, the maximum distance is 0.5, and in the second

case, it is 1.0. However, if we align the points on a circle so that the coordinates

go from 0.0 to 1.0, i.e., the distance is defined as min{|a− b|, 1− |a− b|}, then

the null distribution of the distance looks the same for any a, and all we need is

to have i.i.d. uniformly selected elements in RB . Another example of a distance

that has the same null distribution for any selection of a is the Hamming distance

(Hamming, 1950).

The Levenshtein distance (Levenshtein, 1966) is another example where the

null distribution depends on a. For string AA, there is only one string of distance

1 if A is inserted, but for string CG, there are three strings of distance 1 if A

is inserted. The overall effect of this repetition-based discrepancy needs to

be assessed experimentally; nevertheless, with larger alphabet sizes and longer

sequences, the effect of repeated symbols will get smaller.

3.2 Null Distribution of the Sum

Once we have the null distribution for the minimum operation, we need to eval-

uate the null distribution of the sum. To this end, we will exploit a probability

generating function, which is a well-established concept in probability theory.

The reader is referred to (Feller, 1966) for more details.

Definition 2 (Probability generating function). Let Ω be a finite subset of R.

Let p : Ω 7→ [0, 1] be a probability distribution of a discrete random variable.

Then, the probability generating function is

genpolyp(x) =
∑
ω∈Ω

p(ω) · xω. (4)

Usually, the probability generating function is defined only when Ω is a

subset of non-negative integers. However, for our application, any finite subset
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of real numbers is admissible.

Let us illustrate the usage of the probability-generating functions through

a simple example. Consider tossing a biased dice that is able to produce three

outcomes – 1, 2, and 3 with probabilities of 1
6 ,

1
3 , and

1
2 , respectively. Then,

the generating polynomial is

1
6x

1 + 1
3x

2 + 1
2x

3. (5)

We immediately see the probability of an outcome as a coefficient of the respec-

tive power of x. When two dice are tossed, the sum of 4 can be reached by

having 1 and 3 with the probability of 1
6 · 1

2 = 1
12 , both dice showing 2 with

probability 1
9 , or, finally, 3 and 1 with probability 1

12 . The probability of seeing

4 is, therefore, 2 · 1
12 + 1

9 = 10
36 . The previous calculation is exactly what hap-

pens to the coefficients if we multiply two generating polynomials. Consider the

second power of the polynomial in (5)

1
36x

2 + 4
36x

3 + 10
36x

4 + 12
36x

5 + 9
36x

6. (6)

We can notice that the coefficient of x4 is 10
36 . In summary, the probability

generating function allows an easy calculation of the null distribution for a sum

of independent variables.

Having this intuition at hand, we can define the generating polynomial for

a ∈ RA in the calculation of minb∈RB
dst(a, b) as

genpolya(x) =
∑
d∈Y

P

(
min
b∈RB

dst(a, b) = d

)
· xd, (7)

where Y is the range of distance dst : U × U 7→ Y . The polynomial for the
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whole distance in (1) is then the respective power of genpolya(x)

genpolyRA
(x) = (genpolya(x))

|RA|
. (8)

This polynomial can then be used to calculate the null distribution of the Monge-

Elkan distance under an independence assumption discussed later.

Theorem 2. Assume that the probability P (minb∈RB
dst(a, b) = d) is indepen-

dent of the choice RB. Then the coefficients of polynomial genpolyRA
(x) rep-

resent the null distribution of the Monge-Elkan distance up to a multiplicative

term of 1
|RA| . In other words, if ad is the coefficient of xd in the polynomial

genpolyRA
, then P

(
Dst(RA, RB) =

1
|RA|d

)
= ad.

Proof. The proof can be found in Supplementary Material, Sect. 2. The main

idea of the proof is to calculate the coefficients of genpolyRA
(x) and to compare

them with the null distribution of the Monge-Elkan distance.

Corollary 2. Suppose that

genpolyRA
(x) = a0x

d0 + a1x
d1 + a2x

d2 + · · ·+ anx
dn . (9)

Then the p-value of Dst(RA, RB) = d is equal to

P (Dst ≤ d) =
∑

{di : di≤|RA|d}
P

(
Dst(RA, RB) =

1

|RA|
di

)
=

∑
{di : di≤|RA|d}

ai.

(10)

3.3 A Numerical Example

Here, we present an example calculation of the p-value. Let distance dst be

the Hamming distance over universe of elements U = {AA,AT,AC,CC,CG}.

Let RA = {AA,AC,AC} and RB = {AC,CG}. The Monge-Elkan distance is



3.4 The Independence Assumption 11

Dst(RA, RB) =
1
3 (1 + 0 + 0).

Hamming distance simply calculates the number of mutations; its null dis-

tribution on the universe is (0.2, 0.4, 0.4), i.e., distance of 0 can be encountered

with 20% probability, distance of 1 with 40% probability, and distance of 2

with 40% probability. By applying Corollary 1, we get null distribution of the

minimum as 1
25 (9, 12, 4). For example, the minimum of 0 when selecting two

elements from {0, 1, 2} (i.e., the possible dst values) can be obtained from com-

binations {0, 0} (0.04 probability), {0, 1} (0.16 probability), and {0, 2} (0.16

probability), which is overall with 0.36 = 9
25 probability.

By (8), we get

genpolyRA
(x) =

(
1

25
(9x0 + 12x1 + 4x2)

)3

=
1

15625
(729x0 + 2916x1 + 4860x2 + 4320x3 + 2160x4 + 576x5 + 64x6). (11)

By Corollary 2, we see that the p-value of this particular choice of RA and RB

is equal to

P

(
Dst ≤ 1

3

)
=

1

15625
(729 + 2916). (12)

3.4 The Independence Assumption

We have to look in more detail at the independence assumption in Theorem

2. The fact that the minimum selection should be independent of the set over

which we select the minimum is very restrictive and can be satisfied exactly only

for very trivial distances dst. The calculation in Theorem 2 corresponds to the

situation when for the first element a ∈ RA, we generate bag RB and calculate

the summand according to the Monge-Elkan distance (1). Then, for the second

element a ∈ RA, a new set RB is generated independently, and the summand is

calculated. The calculation then follows with the new set RB for each a ∈ RA.
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However, in the Monge-Elkan distance, the set RB is kept throughout the

calculation. Hence, we are making some error in the p-value calculation. Con-

sider a space defined by distance function dst. The space looks different in the

case where elements in RB are selected randomly uniformly and in the case

where all elements in bag RB are the same. The first case is, however, common,

while the second one is unlikely. Therefore, there are still many situations when

Theorem 2 will be applicable as a reasonable approximation.

3.5 Asymptotic Complexity

To evaluate the asymptotic time complexity, the starting point is the size of

range Y of distance dst. Theorem 1 is applied to calculate the null distribution

of the minimum operation. To evaluate the combinatorial coefficients, O(|RB |2)

operations are needed. As both probabilities in (3) can be evaluated in constant

time (one by a constant time lookup, the second by using a prefix-sum array), the

distribution with the same range can be calculated in O(|Y |+|RB |2) operations.

Calculation of the null distribution using Theorem 2 requires raising a poly-

nomial of degree |Y | to the power of |RA|. Using a naive implementation,

this requires at most |Y ||RA| multiplications as this is the maximum theoretical

possible number of terms in the polynomial multiplication. However, we are

calculating the power of a polynomial that requires much less work - there will

be
(|RA|+|Y |−1

|RA|
)
= N terms in the polynomial.

We can use the algorithm for fast power calculation of large numbers (Knuth,

1981). To calculate the n-th power of a number x, we can compute powers of

x1, x2, x4, . . . , x⌊log2 n⌋ and multiply them together, requiring only 2 · log n mul-

tiplications. In our case, this requires only O(log |RA|) polynomial multiplica-

tions. Using the Fast Fourier transform algorithm for polynomial multiplication

(Cantor and Kaltofen, 1991), one operation will be at most O (N log(N)). Over-
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all, the runtime complexity is in

O (log(|RA|)N log(N)+|Y |+|RB |2) = O
(
log |RA|·(|RA|+|Y |−1

|RA| )·log (|RA|+|Y |−1

|RA| )+|Y |+|RB |2
)
.

(13)

This bound is general as it assumes that no two pairs of numbers from

Y 2 have the same sum unless the pairs are only permuted. This, however, is

usually not true. For example, for the Levenshtein distance (Levenshtein, 1966),

Y = {0, 1, . . . , |Y | + 1}. In this situation, 4 + 5 yield the same sum as 1 + 8,

2+ 7, and 3+ 6. In such a case, the number of polynomial terms grows linearly

instead of exponentially. The runtime complexity is, then,

O
(
log |RA| · |RA||Y | · log(|RA||Y |) + |Y |+ |RB |2

)
. (14)

4 Application to Read Data

(Ryšavý and Železný, 2016) proposed using the Monge-Elkan distance to es-

timate the similarity between sequencing data without the need for sequence

assembly. The idea was further extended in (Ryšavý and Železný, 2019), ap-

plied to contig data in (Ryšavý and Železný, 2017), or a combination of the latter

in (Ryšavý and Železný, 2023). The papers have shown that the Monge-Elkan

distance with some modifications is a good approximation of the Levenshtein dis-

tance between the original genomic sequences, being a good compromise between

the traditional sequence alignment and the alignment-free methods (Zielezinski

et al., 2017). Here, we will briefly provide the formula for the symmetric version

of the Monge-Elkan distance, and modify the p-value algorithm to be applicable

to the symmetric version.

In the case of read data, the universe becomes the set of all sequences over
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alphabet Σ = {A,C,G, T} of a selected length l. Length l acts as a read length -

the length of short fragments that are sampled from the DNA sequence. Due to

the nature of the sequencing process, those fragments, called reads, have lengths

of tens to hundreds of symbols. Unfortunately, the location of the reads within

the original sequence is not available, and in-silico reconstruction of the original

sequences is usually needed. This reconstruction requires assembly guided by

prefix-suffix overlaps between the reads.

Further, bags RA, and RB represent the bags of reads. Distance dst in our

case is the Levenshtein distance (Levenshtein, 1966), which counts the number

of insertions, deletions, and substitutions, i.e., the basic evolutionary events.

Further, the Levenshtein distance is replaced by a slightly modified version in

(Ryšavý and Železný, 2016) that accounts for random locations of the reads

by different gap penalty at margins. The usage of the Monge-Elkan distance

directly on the read data then avoids the NP-hard assembly problem. The

distance is then made symmetric and rescaled, resulting in

Dst
MESG

(RA, RB) =
1

2
max{|RA|, |RB |} · (Dst(RA, RB) + Dst(RB , RA)) (15)

The reasoning behind Formula (15) is the following. The alignment between

sequences A and B maps similar subsequences together. Therefore, read a

should be aligned with the most similar read in RB . This is done by the Monge-

Elkan distance. The results are averaged for all reads in RA. The distance is

then made symmetric in (15). The multiplicative terms at the beginning bring

the distance to the proper scale as the Monge-Elkan distance is an average of

values no more than read length l while the maximum distance between the

original sequences is proportional to max{|RA|, |RB |}.
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4.1 A Modification of the p-value Algorithm

From the p-value calculation perspective, the multiplicative terms in (15) are

irrelevant as they only apply a linear scale on the null distribution. There-

fore, calculating the p-value for the distance in Formula (15) is equivalent to

calculating the p-value for

|RB |
∑
a∈RA

min
b∈RB

dst(a, b) + |RA|
∑
b∈RB

min
a∈RA

dst(a, b). (16)

To derive the formula above, consider multiplying the average of Dst(RA, RB)

and Dst(RB , RA) by 2|RA||RB |.

Again, we will assume the independence assumption as discussed above.

Instead of a single sum, we will have an addition of two sums. Therefore,

we are able to multiply the generating polynomials (under the independence

assumption) to obtain the generating polynomial for the new Formula (16).

The last thing to solve is the different weights of both sums in Formula (16).

If we multiply each element in range Y of distance dst, then the null distribution

of the product is scaled as well. Following the definition of the probability gen-

erating function in Definition 2, the multiplication is equivalent to multiplying

each exponent in the power of x. Therefore, the resulting generating polynomial

is

genpolyMESG(x) =
(
genpolya(x

|RB |)
)|RA|

·
(
genpolyb(x

|RA|)
)|RB |

. (17)

In Formula (17), polynomial genpolyb is defined similarly to genpolya, except

the roles of RA and RB are swapped. The coefficients of polynomial genpolyMESG

can then be used to estimate the p-value in the same manner as in Theorem 2.
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4.2 A Numerical Example

In this section, we follow the example from Sect. 3.3.1 A shortest-superstring

assembly of the reads would be AAC, and ACG with the Hamming distance of

2.

If we evaluate the symmetric version of the Monge-Elkan distance according

to (15), we see that the distance is equal to 3
2

(
1+0+0

3 + 1+0
2

)
= 1.67. However,

in the p-value calculation, we will evaluate (16), which is 5 and does not contain

terms that do not influence the p-value calculation. The null distribution of

the minimum when selecting 3 reads from U is equal to 1
125 (61, 56, 8). We have

already seen genpolya in Sect. 3.3, genpolyb is constructed symmetrically from

the null distribution 1
125 (61, 56, 8). Therefore,

genpolyMESG(x) =

(
1

25
(9x0 + 12x2 + 4x4)

)3

·
(

1

125
(61x0 + 56x3 + 8x6)

)2

.

(18)

By the expansion, we get

genpolyMESG(x) =
1

253 · 1252 (9
3 · 612x0 + 3 · 9 · 9 · 12 · 612x2+

+ 93 · 2 · 61 · 56x3 + 18084060x4 + 19922112x5 + 19072368x6 + · · · ). (19)

Since the distance was equal to 5, the p-value is equal to the sum of the coeffi-

cients up to term x5, which is 1
253·1252 (2712609+10850436+4980528+18084060+

19922112) = 0.23.

1In a more realistic scenario, universe U would contain all 16 possible reads. However,
to make the example continuation of the one from Sect. 3.3, we keep only the universe of
5 elements. Also, a more likely comparison of genomic sequences would use the Levenshtein
distance, which is identical to the Hamming distance in the presented example.
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4.3 Runtime Complexity, Independence Assumption, and

Null Distribution of dst

In the previous section, we multiplied the generating polynomials for two sums,

assuming that the sums were independent. However, this is not true. In the

first sum, we are averaging the row minima of a matrix; in the second sum, we

are averaging the row maxima of the same matrix. Therefore, the generating

polynomial provides only an approximation.

Regarding the computational complexity, the runtime is similar to (13), only

we need not calculate the whole null distribution; only values smaller than d

are required, where d is the distance calculated by (16). Therefore the p-value

calculation is in

O
(
log(|RA||RB |) · d · log d+ l + |RA|2 + |RB |2

)
. (20)

The last component is missing, which is the null distribution of the read-read

distance dst. In the case where dst is the Levenshtein distance (Levenshtein,

1966), the null distribution is unknown. We were only able to find previous

research that has shown that the null distribution for a related problem of the

Longest Common Subsequence (Chvátal and Sankoff, 1975) problem follows the

Tracy-Widom distribution in (Majumdar and Nechaev, 2005). Therefore, the

empirical evaluation of the null distribution for the Levenshtein distance and

its modifications that were proposed in (Ryšavý and Železný, 2016) is needed.

Figure 1 shows null distributions for the Levenshtein distance, together with

the effect of min operation in Theorem 1.
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(a) Levenshtein distance dst. (b) Minimum of the Levenshtein distance minb∈RB
dst(·, b)

Figure 1: Here, we illustrate the empirical null distribution of the underlying
distance function dst, which is not known exactly in many cases (including the
Levenshtein distance). The figure on the left shows the null distribution of
distance dst, and the figure on the right shows the effect of Theorem 1 on the
distribution. We see that after the calculation of the minimum, the distribution
is asymmetric, unlike the original one - the smaller distances are preferred, and
the minimum being higher than 50 is unlikely but possible. The distribution
was calculated empirically for 108 trials assuming random sequences of length
l = 100. Nevertheless, distances smaller than 38 and larger than 70 were never
registered as their probabilities are very low. The zero probabilities in the
calculation could be dealt with using the Laplace smoothing. The minimum
distributions were calculated using Theorem 1 for read bag size of 1,000.

5 Experimental Baselines for Comparison

In the experimental evaluation in Section 6, we will need to compare the al-

gorithm from Section 3 with unrelated but alternative ways to evaluate the p-

value. Here, we provide two competing approaches stemming from well-known

mathematical theorems - the Central Limit Theorem (CLT) and the Bernstein’s

inequality (BI) (Bernstein, 1924). Both baselines allow us to estimate the null

distribution of the Monge-Elkan distance under the common assumption with

our method that the null distribution of distance dst is known. As a result,

we will be able to compare the null distributions of the Monge-Elkan distance

calculated by the three alternatives in terms of the Kullback-Leibner divergence.

The CLT approximation will use the property that the sum of numbers

sampled from the same distribution will converge to a normal distribution with
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known parameters. In our case, we have |RA| distances, the sum of which can

be approximated by CLT. In the case of BI, we can bound the p-value by an

upper bound.

5.1 The Central Limit Theorem Approximation

Formula (13) provides the complexity for the general case when the time grows

exponentially. We will provide an alternative approximation of the p-value in

the case when |RA| is too large to evaluate Formula (10), and range Y does not

allow the complexity of (14).

The generating polynomial approach in Sect. 3.2 offers an exact method

to calculate the null distribution, assuming the independence of the min calcu-

lations on the choice of RB . This assumption might be applied in the Linde-

berg–Lévy Central Limit Theorem (CLT), which can be reformulated as follows.

Theorem 3 (CLT). Assume that the probability P (minb∈RB
dst(a, b) = d) is

independent of the choice RB. For minb∈RB
dst(a, b), denote by µ its expected

value, and σ2 its variance. Then, as |RA| → ∞,

[
Dst(RA, RB) =

1

|RA|
∑
a∈RA

min
b∈RB

dst(a, b)

]
→ 1√

|RA|
N (0, σ2) + µ, (21)

where N (0, σ2) is the normal distribution with mean 0, and variance σ2.

Corollary 3 (CLT approximation). For sufficiently large |RA|, the p-value of

Dst(RA, RB) = d is approximately equal to

P (Dst(RA, RB) ≤ d) ≈ P
(
N (0, σ2) ≤

√
|RA|(d− µ)

)
. (22)
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5.2 Bernstein Inequality as an Upper Bound

Here, we will apply a version of Bernstein’s inequality (BI) (Bernstein, 1924),

to calculate an upper bound on the p-value. The BI provides a bound on the

probability that the sum of random variables deviates from its mean, similar to

Hoeffding’s inequality, (Hoeffding, 1963). In our setting, the inequality stands

as follows. Note that the bound is usually formalized for the case when the

sum is higher than the mean, but a symmetric version for smaller sums than

expected also exists.

Theorem 4 (Bernstein Inequality). Let probability P (minb∈RB
dst(a, b) = d) be

independent of the choice RB. For minb∈RB
dst(a, b), denote by µ its expected

value, and σ2 its variance. Let M = maxy∈Y |y|. Then, for positive t,

P

(
1

|RA|
∑
a∈RA

min
b∈RB

dst(a, b) ≤ µ− t

)
≤ exp

(
− |RA|t2
2σ2 + 2

3Mt

)
. (23)

By substituting d = µ− t, we obtain an upper bound on the p-value.

Corollary 4 (BI upper bound). Let µ > d. Then, the p-value of Dst(RA, RB) =

d is

P (Dst(RA, RB) ≤ d) ≤ exp

(
− |RA|(µ− d)2

2σ2 + 2
3M(µ− d)

)
. (24)

6 Experimental Evaluation and Discussion

Given that the presented approach relies on an approximation assuming inde-

pendence, which is not necessarily true, it is important to verify the validity

of the null distribution obtained through Theorem 2 by comparing it with the

actual data. To do so, we selected three simple examples of distance functions

and evaluated them for various choices of bag sizes as well as different universes.

The distances include:
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� the Levenshtein distance (Levenshtein, 1966) on binary strings of length l;

� the Hamming distance (Hamming, 1950) on binary strings of length l (see

Supplementary Material, Sect. 3);

� the absolute difference between two numbers from {0, 1, 2, . . . , n−1} aligned

on a circle. Formally, min{|a− b|, n− |a− b|} where a and b are numbers

in the respective set.

6.1 Comparison with the Exact Null Distribution

In the first experiment, the parameters l and n were selected so that the null

distribution of the Monge-Elkan distance could be calculated by mere enumer-

ation of all possible bags RA and RB . For simplicity of presentation, |RA| was

set the same as |RB |. The null distribution was then calculated by enumeration

of all possible bags and using Theorem 2. Those two distributions were then

compared visually as well as using the Kullback-Leibner divergence (Kullback

and Leibler, 1951) (KL-divergence, sometimes called relative entropy). In the

KL-divergence, the natural logarithm was used.

In the case of the string distances, the boundary set for enumeration was

2l|RA| = 27, which meant 227 elements in the null distribution at most. In the

case of the distance between the numbers, the limit was n2|RA| = 1010, which

meant 1010 elements in the null distribution at most.

The experimental evaluation is in Fig. 2 and Supplementary Material Fig.

1. From the figures, we can notice that the KL-divergence is growing with larger

bag sizes (the independence assumption is more relied on in the multiplication).

It might be expected that the KL-divergence would decrease with a universe of

more elements (i.e., higher l or n), which is, however, supported only by the

data in Fig. 2.

From the plots, we can also notice that the approximation underrepresents
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Figure 2: Comparison of the approximated (blue, narrow) and ground-truth
(red, wide) null distribution. The approximated distribution was calculated us-
ing Theorem 2 while the ground-truth distribution was calculated enumerating
all possible choices of RA and RB of the same size. NA means that with the
given settings, it was not feasible to enumerate the distribution.
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the low distances for more cardinal universes U . This is not a desired behav-

ior; however, there remains an open window for future work in modifying the

approach so that the p-value cannot be underestimated.

6.2 Comparison with an Empirical Distribution

Next, to test the methods under a wider range of conditions, we used an empir-

ical distribution. We sampled 106 (uniformly, i.i.d.) samples together with uni-

form priors to avoid zero probability values (and thus undefined KL-divergence).

This matches the standard Barnard’s Monte Carlo sampling approach (Marriott,

1979) for p-value estimation. The comparison in the form of the cumulative dis-

tribution functions (CDFs) is in Fig. 3 and Supplementary Material Fig. 2.

The KL-divergence between the methods is shown in Table 1 and Supplemen-

tary Material Table 2.

6.3 Comparison with the Baselines

To provide a further comparison, we included baselines presented in Sect. 5.

We include those two baselines in Fig. 3 and Table 1. In both approaches

described in Sect. 5, Corollary 1 was used to calculate the null distribution of

the minimum operator. The reason for that is the fact that |RB | is too large to

allow a full enumeration of the null distribution of the minimum operator.

From the experimental results, we can notice that the Bernstein inequality

serves as an upper bound even in the case of approximations. Nevertheless, the

BI upper bound is a poor approximation, with the KL divergence always above

0.1. In all cases, the generating polynomial method in Theorem 2 is capable of

providing the best results. Nevertheless, we might notice that with larger |RA|,

the method provides worse results. On the contrary, the error of the central

limit theorem approximation grows slower. Extrapolating this behavior, for
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(b) min{|a− b|, n− |a− b|} for a, b ∈ {0, 1, 2, . . . , n− 1}.

Figure 3: Comparison of the approximated (blue) and empirical (red) null dis-
tribution CDFs. The approximated distribution was calculated using Theorem
2 while the ground-truth empirical distribution was calculated using Barnard’s
Monte Carlo sampling for 106 samples of RA and RB of the same size. The green
null distribution represents an upper bound given by the Bernstein inequality
(see Corollary 4), and the gray distribution is the one which uses the CLT in-
stead of Theorem 2 (see Corollary 3). In both BI and CLT cases, Corollary 1
was used to calculate the null distribution of the minimum operator.
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The Levenshtein distance (Levenshtein, 1966) over binary strings of length l.
Gen. poly. approximation CLT approx. BI upper bound

|RA| = 2 l = 6 0.004 0.074 0.897
l = 8 0.004 0.061 0.579
l = 10 0.004 0.052 0.409
l = 12 0.004 0.045 1.030

|RA| = 5 l = 6 0.005 0.042 0.268
l = 8 0.005 0.033 0.261
l = 10 0.006 0.027 0.273
l = 12 0.007 0.022 0.290

|RA| = 10 l = 6 0.004 0.028 0.169
l = 8 0.003 0.021 0.232
l = 10 0.004 0.015 0.367
l = 12 0.005 0.011 0.562

|RA| = 15 l = 6 0.006 0.026 0.251
l = 8 0.003 0.015 0.317
l = 10 0.003 0.011 0.129
l = 12 0.005 0.007 0.446

|RA| = 20 l = 6 0.008 0.026 0.169
l = 8 0.002 0.013 0.235
l = 10 0.002 0.009 0.262
l = 12 0.004 0.005 0.242

min{|a− b|, n− |a− b|} for a, b ∈ {0, 1, 2, . . . , n− 1}.
Gen. poly. approximation CLT approx. BI upper bound

|RA| = 6 n = 12 0.045 0.132 0.161
n = 14 0.046 0.135 0.214
n = 16 0.046 0.136 0.265
n = 18 0.047 0.139 0.315
n = 20 0.047 0.140 0.372

|RA| = 7 n = 12 0.050 0.136 0.145
n = 14 0.050 0.138 0.190
n = 16 0.053 0.143 0.233
n = 18 0.052 0.142 0.273
n = 20 0.052 0.145 0.312

|RA| = 8 n = 12 0.055 0.139 0.135
n = 14 0.055 0.139 0.178
n = 16 0.056 0.142 0.215
n = 18 0.056 0.144 0.249
n = 20 0.058 0.147 0.281

|RA| = 9 n = 12 0.060 0.139 0.137
n = 14 0.058 0.140 0.173
n = 16 0.060 0.143 0.205
n = 18 0.060 0.146 0.235
n = 20 0.061 0.148 0.264

|RA| = 10 n = 12 0.063 0.141 0.146
n = 14 0.063 0.142 0.179
n = 16 0.062 0.141 0.206
n = 18 0.063 0.145 0.229
n = 20 0.064 0.145 0.254

Table 1: The KL-divergence that compares the approximated (see Theorem 2)
null distribution, the CLT approximation (see Corollary 3), and the BI upper
bound (see Corollary 4). The ground-truth distribution was calculated for 106

samples of RA and RB of the same size. In both BI and CLT cases, Corollary
1 was used to calculate the null distribution of the minimum operator.
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large |RA|, it might be better to use Corollary 3 instead of Theorem 2. Also,

with growing |RA|, the CLT is more efficient than the generating-polynomials

in terms of runtime. Thus, in studies such as (Song and Rudniy, 2010; Rudniy

et al., 2014; Yamaguchi et al., 2012; Stoilos et al., 2005; Cheatham and Hitzler,

2013), the generating polynomials would be the method of choice, while in the

case of (Ryšavý and Železný, 2016, 2019, 2023), the CLT approximation would

be more efficient.

6.4 Dependence on Key Parameters

The problem of calculating the p-value has two major independent parameters

- the size of the bags RA and RB , and the size of the universe (i.e., parameters

l or n). To further illustrate the behavior of the methods, we include in Sup-

plementary Material Fig. 3 plots that show averages of the results from Table

1 when only one of the parameters varies at a time.

From the plots, we can learn that the KL divergence of the presented method

slightly grows with increasing |RA|. This is in contrast with CLT approxima-

tion, where the KL divergence decreases in two of the three cases. In the case

of the BI bound, the KL divergence decreases with the number of sampled

elements. Nevertheless, this result is not as surprising as BI’s having a much

higher KL-divergence. The results of both the presented method, as well as CLT

approximation do not change significantly with growing universe size. Never-

theless, with a larger universe, the error of the BI bound grows.

6.5 Comparison of Runtime Requirements

One of the advantages of the presented approach is its effectiveness compared to

Barnard’s Monte Carlo sampling approach (Marriott, 1979), where we repeat-

edly randomly sample bags, calculate distance, and compare it with the result.
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The general runtime complexity of the method presented in this paper can be

found in (13).

In comparison, when using Barnard’s Monte Carlo sampling for a single

evaluation of the Monge-Elkan distance, we need, in general, O(|RA||RB |td),

where td is the complexity of single dst calculation. Therefore, to evaluate

the p-value P (Dst ≤ d), we need at least θ
(

1
P (Dst≤d)

)
distance calculations

(assuming that we require a constant number of decimals points to be known).

To illustrate on a specific example, consider for now the Levenshtein dis-

tance on the position of dst. In this case |Y | = {0, 1, 2, . . . , l}, where l is the

length of the sequences. Then, the runtime of the generating-polynomial p-value

calculation is in

O
(
log |RA| · |RA||Y | · log(|RA|l) + l + |RB |2

)
, (25)

which is even less than an evaluation of the single Monge-Elkan distance value.

In the case of Barnard’s Monte Carlo sampling, we need

O
( |RA||RB |(l + k2)

P (Dst ≤ d)

)
, (26)

where k is the estimate of the maximum possible distance between any two

strings in RA × RB . The runtime of O(l + k2) per Levenshtein distance calcu-

lation stems from the Ukkonen’s cutoff heuristic (Ukkonen, 1985).

With the assumption that the null distribution of dst is known, both CLT ap-

proximation in Corollary 3, and BI upper bound in Corollary 4 can be evaluated

in O(1).

To support the theoretical runtime requirements with real-world measure-

ments, in Supplementary Material Table 3, we include the time needed to cal-

culate the approximated null distribution, the empirical distribution from 106
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samples made by Barnard’s Monte Carlo sampling, the CLT approximation,

and the BI upper bound. The measurements include time obtained as an av-

erage from ten consecutive calculations, followed by the standard deviation of

the result. The results show that the runtime needed to evaluate CLT and BI is

neglectable. Nevertheless, this speed is paid by worse KL-divergence than the

one of the presented method. The results show that the speedup obtained by

the generating polynomial method is in the order of hundreds to thousands in

the case of Hamming and Levenshtein distances. In the third considered case,

the speedup is up to tens of thousands.

7 Conclusion and Future Work

We have presented an algorithm to estimate the null distribution of the Monge-

Elkan distance that can be used to compare sequence similarity from unassem-

bled read bags. Our paper provides a method formulated using generating

polynomials. In an experimental evaluation, we compared the proposed meth-

ods with Bernstein’s inequality upper bound and an approximation based on

the Central Limit theorem.

The methodology contains two simplifying assumptions that represent pos-

sible sources of error. However, we have confirmed empirically that their detri-

mental effect is generally not significant. In particular, the KL-divergence be-

tween the calculated distribution and the one obtained by Monte-Carlo sampling

tends to be negligible. The contributed method thus represents a feasible tool

that may even be a necessity when Monte-Carlo sampling is intractable due to

the slow evaluation of the Monge-Elkan distance. The experiments and runtime

complexity also show that with the growing size of the bags, the Central Limit

theorem approximation will eventually become better in terms of runtime.

The method provides several options for future work. Of particular inter-
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est is a theoretical assessment of the difference between the approximated null

distribution and the exact one. From the practical point of view, the p-value

calculation could be modified so that the p-value is not overestimated. Also, the

ideas from Sect. 4 call for more experimental insights to evaluate the influence

of non-uniformity of reads and compare with other tools and methods that use

best-scoring matches.
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