Kuželka, Ondřej and Szabóová, Andrea and Železný, Filip

Kuželka, O., Szabóová, A., & Železný, F. (2014). A method for reduction of examples in relational learning. Journal of Intelligent Information Systems, 42(2), 255–281.


Feature selection methods often improve the performance of attribute-value learning. We explore whether also in relational learning, examples in the form of clauses can be reduced in size to speed up learning without affecting the learned hypothesis. To this end, we introduce the notion of safe reduction: a safely reduced example cannot be distinguished from the original example under the given hypothesis language bias. Next, we consider the particular, rather permissive bias of bounded treewidth clauses. We show that under this hypothesis bias, examples of arbitrary treewidth can be reduced efficiently. We evaluate our approach on four data sets with the popular system Aleph and the state-of-the-art relational learner nFOIL. On all four data sets we make learning faster in the case of nFOIL, achieving an order-of-magnitude speed up on one of the data sets, and more accurate in the case of Aleph.


  author = {Kuželka, Ondřej and Szabóová, Andrea and Železný, Filip},
  title = {A method for reduction of examples in relational learning},
  journal = {Journal of Intelligent Information Systems},
  year = {2014},
  volume = {42},
  number = {2},
  pages = {255-281},
  issn = {1573-7675},
  doi = {10.1007/s10844-013-0294-z},
  url = {https://doi.org/10.1007/s10844-013-0294-z}