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Abstract

This paper introduces a competence estimate
approach to process fault diagnosis. The fault
examples are extended by estimates of compe-
tence to individual classifications, which are
used as additional attributes. Several machine
learning (ML) techniques are applied on the
training set of examples to develop a method-
ology which can generate competence esti-
mates for unseen cases and finally suggest
their classification in a crisp form. The fea-
tures of the method are shown on a case study
concerned with condition monitoring of in-
duction motor driven pumps. The experiments
indicate that the suggested method gives bet-
ter results than fault prediction with aid of di-
rect application of traditional ML techniques.

1 Introduction

Condition monitoring of induction motor driven
pumps, involves detection of commonly encountered
faults associated with the pumps before these faults
become very serious (resulting e.g. in the shutdown of
a process plant). The preliminary study [Kout et al.,
1997] proved that the set of the on-line measured at-
tributes of motor currents offers a good potential for
industrial diagnostics of pump defects when combined
with Al methods, namely with machine learning (ML)
techniques. The goal of the accomplished experiments
was to develop a methodology allowing to classify any
(unseen) case characterised by these on-line measured
attributes into one of the five classes indicated in the
training data by the attribute STATUS. The attribute
STATUS is considered to be a dependent attribute
reaching the following states: 0 indicates normal state,
1 indicates low-level cavitation, 2 cavitation, 3 low-
level blockage and 4 stands for blockage.

This paper describes a fault diagnostic system based
on competence estimate (or fuzzy) definition of the
classified parameter. ML techniques are applied on the
training set of examples using the new description of
the classified parameter and finally they are used in
order to transform classifications of unseen cases back
to a crisp form. In case of the intelligent pump diag-
nostics, the crisp parameter STATUS is substituted by

three competence estimate (membership) functions
from the universe of attribute space.

2 Method description

Fault diagnostic methods are requested to generate
unambiguous results — they have to discriminate nor-
mal cases from the fault ones. Moreover a type of the
fault is usually to be determined besides. The methods
are supposed to give the response in the form of a
clear single valued classification as hazy responses can
be hardly used for control of an observed system. This
requirement implies that unambiguous classifications
have to be assigned to all the training examples used
during the learning period as well. However, this type
of assignment does not correspond to reality when
smooth continuous transitions connect adjacent
classes. From this point of view, it seems to be more
natural to allow for fuzzy representation of class com-
petence.

The method being described can be divided to four
fundamental steps (explained in the rest of the paper):

1. Extension of the set of considered attributes by es-
timates of competence to individual classifica-
tions— each possible classification i is estimated by
a competence estimate function CEF;; the set of
values of all considered CEFs for any example de-
fines its competence estimate vector CEV,

2.search for relation between CEVs and the single
valued classifications -- proposal of a method how
to find the single valued classification from CEFs
(creation of a corresponding decision tree or a neu-
ral net),

3.assessment of CEVs for the testing examples (us-
ing CEVs in the training set and N nearest neigh-
bors method),

4.transformation of a competence class estimate de-
scription of testing examples to a single value.

Process denoted in the step / depends mostly on real
application. The following chapter suggests a process
leading to the above-mentioned extension. The pro-
posal can be easily adapted to real application specifi-
cation if the individual classes are totally or partially
ordered. As the extension result, there is generated a
set of training examples enriched by competence esti-



mate functions CEFs. Assessment of CEFs for the
testing examples is achieved by N-nearest neighbors
algorithm. The database of training examples is
searched through. The nearest training examples are
sorted out for each testing example. Then, the compe-
tence estimate design of each tested example is pro-
posed from the weighted classification competence
estimates of the selected nearest neighbors. Finally,
there are applied in parallel results of two ML tech-
niques, namely ID3 and NN algorithms, to transform
classification estimates or competence estimate vectors
of tested examples to single valued classifications -
(see Figure 1).
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Figure 1: Competence Estimate Method

It is worth to notice that steps 1, 2 and 4 are con-
formable to fuzzification and defuzzification steps in
fuzzy classifier systems. However, by the same mail it
is obvious that the suggested classification method
does not satisfy definition of fuzzy classifier system:
“A fuzzy classifier system is a system which learns
fuzzy rules in order to guide its performance in an
arbitrary -environment” [Geyer-Schultz, 1995]. Com-
petence estimates append utilisation of background
knowledge that can not be extracted from the attribute
set nor the single valued classifications.

To sum it up, the suggested method is suitable for
all tasks that meet the following requirements:

i. Training and testing examples are described by

means of a set of attributes,

ii. there is assigned a single class to each training ex-
ample (by a teacher/domain expert),

iii. the set of individual classes is totally or partially
ordered (again with aid of background knowledge
provided by the domain expert),

iv. transitions between adjacent diagnostic states show
continuous course, while original classes corre-
sponding to these states change discretely (very
representative example of such a case is explained
in case study - see Section 3),

v. competence estimate functions transforming the
universe of attribute space to the real unit inter-
val<0,1> can be found.

2.1 Competence Estimate Definition of
Classified Parameter

Let’s consider an application with n different single
valued classifications bound by a relation of partial
order. Any longest ordered sequence of classifications
is referred to as an ordering. Suppose there are m
different orderings in the considered set of classifica-
tions. Generally, these orderings do not have to be
necessarily mutually disjoint and each classification
should appertain to one ordering at least. In the case of
fault diagnostics, it usually holds that each ordering o;
corresponds to a transition from a normal state norm
to a marginal fault state f-fault; (final fault). Then, an
individual CEF f; qualifies a competence of a selected
case to the i-th fault scale. The value P,«A of the CEF f;
evaluates competence of the example A to the i-th
marginal classification f-fault; (fi(A)= P;*). Provided
P is equal to or near to 0, the example A shows to be
normal (from the point of view of this type of fault).
Provided P;* is equal to or near to 1, the example A
matches with the state f- fault;, Otherwise, the exam-
ple A is going to be classified as a state from the i-th
faElt scale: belief in this classification corresponds to
P;".

norm fault; —p - —pf-fault;
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Figure 2 Fault state diagram

Having the m competence estimate functions corre-
sponding to faults, it is natural to introduce the last
competence estimate function for the normal state. It is
denoted by P ,,.; and it symbolically complements
the sum of all probabilities to 1. Therefore, the follow-
ing equation holds for all examples:

m 4 4

i=1
is number of particular competence esti-
mate functions,

P,* is a value of the i-th particular competence
estimate function of example A.

where m

The crucial phase of the whole method comes with
definition of competence estimate functions f;, which
have to be based on some form of background knowl-
edge available in the given domain. There are basically
two extreme situations when the method can not be
applied. The first situation appears when these func-
tions can not be formulated at all (not even intui-
tively). The second extreme occurs under condition
that competence estimate functions can be defined
absolutely precisely, i.e. for each i<m there exists
function ¢; such that:
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where f; is the i-th particular competence estimate
function,
a is a value of the i-th attribute of example
A,

k  is the number of measured attributes.

Of course, the method does not fail under such cir-
cumstances, but it makes no use to apply it having
another perfect tool for classification. In such a case,
all the values of competence estimate functions could
be analytically calculated for unseen examples and if
they were perfect they would be easily transformed to
a single value. On the other hand, the method can be
applied in all other cases. Especially if class compe-
tence estimate design of the training examples is intui-
tive or it can be mathematically defined, but attributes
do not occur as the input parameters of the function
(individual functions can be defined with respect to the
selected attributes, which are not available within the
testing set).

2.2 N-Nearest Neighbours

The core of classification method of N-nearest neigh-
bours is very simple provided vague terms neighbour,
similarity etc. are taken in account. In fact, these terms
have to be defined through relatively complicated set
of numeric parameters, whose adjustment represents
the most difficult and time-consuming procedure
within the framework of method of this type.

Let us define these vague terms more precisely. The
nearest neighbour (let us denote it B) to a testing
example A is defined as the example with the shortest
weighted distance of its image from the image of A in
the normalised attribute space of dimension &:

where k  is the number of measured attributes,

a,«A is a value of attribute a; for the example A,

a;® is a value of attribute a; for the case B,

max(a;) is the maximum value of the attribute a; in
the training set,
min(a;) is the minimum value of the attribute a; in

the training set,
w; is the weight associated to the attribute a;.

The value of the competence estimate function P;
within each considered scale of the example A is again

N
==
2 V.

calculated as a weighted sum of corresponding compe-
tence estimate functions of N nearest neighbours of the
example A:
where N

P

is the number of the nearest neighbours
used for prediction,

v; s a weight associated with the i-th nearest
neighbour of example A,

i 1s a value of the j-th competence estimate
function of the i-th nearest neighbour of
the example A.

It follows that in order to reach good results of pre-
diction two different arrays of weights (w, v) had to be
optimised together with the parameter N.

2.3 ID3 — Return to Original Single
Valued Classification

The ID3 algorithm, member of TDIDT (Top-Down
Induction of Decision Trees) family, is a well-known
algorithm of creating decision trees from examples
[Quinlan, 1993].

The TDIDT algorithms do not use any form of
background knowledge. The inference engine con-
structs a decision tree in a recursive way from its root
to its leaves, partitioning the original training set into
smaller and smaller subsets. Inducing a decision tree
exploits a general strategic heuristic: simpler trees are
preferable because they exhibit better predictive
power. There exist several pre- and post- pruning
techniques exploited by TDIDT algorithms for proc-
essing noisy data and reducing the “bushy” decision
trees [Quinlan, 1993].

The idea of transformation of competence estimate
classification values to the single valued design is
quite easy. A subset of training examples with known
original classification is employed for this purpose.
The competence estimate classifications are calculated
on all the training examples belonging to the selected
subset using the method described in section 2.2. In
such a way, a new set of training data is introduced.
Each object is represented by attributes corresponding
to competence estimate classifications, desired class
agrees with the single value original classification. A
decision tree can be generated for the obtained data
set. This tree gives a chance to return to the single
value classifications for the testing examples after N-
nearest neighbour method application.

And there is one more advantage of this approach.
ID3 algorithm attempts to reach the optimal depth of
the generated tree [Russel and Norvig, 1995]. A tree,
which answers basic conditions of probably approxi-
mately correct (PAC) learning, must meet the follow-
ing inequality:

HI
Inex num=Inat  num

where ex_num is size of the training set,
at_ num is number of attributes,
HI is the optimal depth of the tree.

Usually it holds that m<k (number of considered
class orderings is significantly lower than the number
of measured attributes). Thus, ID3 does not need as
many training examples to generate a tree of the same
depth ensuring the same degree of reliability as in the
case of direct learning on the single value classifica-
tions.



2.4 NN — Return to Original Single
Valued Classification

The neural net architecture used for this study is a
feedforward network with one hidden layer. We have
used the standard backpropagation-training scheme
that employs the delta rule-training algorithm. A de-
tailed description of the neural net architecture and the
delta rule training algorithm used can be found in
[Soucek, 1991, Pao, 1989].

This neural net scheme is employed using super-
vised learning. Upon reaching a minimum error
threshold or improvement level the neural net is con-
sidered trained and the weights and other parameters
previously adjusted are clamped or fixed. The trained
neural net is then used to classify unknown samples or
in our case, characterise pump operation from sampled
input parameters. This is performed by presenting
characteristics from an unknown operating state to the
neural net that is processed in a feedforward manner
and an output value is computed. The output value
represents the computed state of the system.

The most appropriate network topology is dependent
on the training data set and the mapping surface to be
encoded in the neural net. There is no general theory
how to construct the best topology for a given problem
although general rules of thumb do exist. In classifica-
tion tasks such as this one (linearly non-separable),
three-layered networks are used often. The number of
input nodes corresponds to the dimension of the input
vector. In the case of pure NN approach, there are 8
input neurons with each one representing each input
attribute. In the case of the combined method (combi-
nation of competence estimate and neural network
approaches), there were employed 3 neurons in the
input layer, one for each competence estimate value.
The number of output nodes may be a single node or
multiple nodes with each node representing one of the
possible attributes or classification values. For our
study we use 5 output neurons with each one repre-
senting one of the possible operating states of the sys-
tem. The data and the states of the system are de-
scribed in the following section. The number of nodes
in a hidden layer is usually determined experimentally.
There are several heuristics, however they are of a
general nature and merely provide a good starting
point for defining the initial neural net architecture.
Subsequent training and testing sessions are typically
needed to refine the neural net structure and improve
classification accuracy.

2.5 Recapitulation

Having defined individual method steps in detail, it is
worth to summarise exact sequence of these steps at
full length. Compliance of the sequence assures cor-
rect segregation of training and testing data.

Let us have a training set T consisting of # examples.
Each example is assigned to one of n different single
valued classifications, which belong to m different
orderings. The goal is to assign correctly one single
valued classification to each of u patterns belonging to
a testing set U. The process of classification is as fol-

lows (steps 1 to 3 represent learning phase, steps 4 to 6
testing phase):

1. Define CEF fi,....,f, and provide their values for
all examples from 7. Additional competence esti-
mate for the normal state is defined as the com-
plement of (f; +...+f;,) to 1. Thus m+1 new values
are assigned to each example (P 1y,....P6mr1)s

2. The N-nearest neighbour algorithm is applied to
the set T to generate new transformed values
CEVT=(PT(1,1),...,PT @m+1y) for each example be-
longing to T. The parameters v for the N-nearest
neighbour algorithm are adjusted so that the total
difference between CEV and CEV' is minimised
on T. The CEV" values will be used in the next
steps to ensure maximal similarity between the
training set and the testing set data.

3. Create a decision tree (learn a neural net) that
transforms values obtained in the step 2 back to
single valued classifications; all patterns from set
T are used for this purpose; values (PT(i,]),...,PT
@m+n) are considered as attributes, single valued
classifications represent desired classes.

4. Assess values of CED for each example belonging
to the set U using N-nearest neighbour algorithm—
values (PT(U),. .,PT m+1)) are assigned to each test-
ing example.

5. Use the decision tree (neural net) created in the
step 3 to obtain single valued classifications for all
examples from U.

6. Evaluate quality of the generated classifications
(provided the correct classifications are known
within the set U).

3 Case Study

Pumps, motors and bearings constitute the major share
of equipment, which require very frequent mainte-
nance in the process industries. The unscheduled shut-
downs, which they cause, result in considerable pro-
duction and revenue loss. Incipient fault detection
based on advanced condition monitoring techniques
would ensure lower down time and greater throughput.
Condition monitoring of pumps has not received much
attention and there are only few papers in which
schemes are proposed for the fault detection of pumps
by analysing the signal derived from a pressure trans-
mitter or a flow-meter installed in the pumping system.
However, it is possible to detect some fault conditions
in pumps by analysing the stator current of the motor
driving the pump.

Number of parameters can be derived from the
measurements on the system consisting of a motor and
a pump. Throughout this study there was used a set of
nine parameters. Eight parameters represent significant
magnitudes of the stator current spectrum. The last
parameter, denoted by STATUS, provides the classifi-
cation of the actual behaviour exhibited by the pump



system - its diagnoses. There can be distinguished 5
important states, namely mormal function and four
fault types. As a matter of fact, these five states can be
partially ordered as there are just two marginal faults
associated with the observed pumps: cavitation and
blockage. Thus there can be defined two different
state orderings, each of them corresponding to one of
marginal faults: ordering A — normal state (denoted 0),
low-level cavitation (1) and cavitation (2) and ordering
B — normal state (0), low-level blockage (3) and
blockage (4).

As it follows from the method description chapter,
two competence estimate functions evaluating compe-
tence of each example to one of the fault orderings
should be defined. In addition to that, the third CEF
expressing competence of example to a normal state
should be calculated (it makes sum of all CEFs for a
given example equal to 1). Despite of the fact the func-
tions can be hardly analytically qualified on the above-
defined attribute set, they can be related to parameters
from outside of the attribute set. All the measurements
within the training set were collected in such a way,
that faults were simulated by gradually closing the
valve. The cavitation was simulated with aid of valve
modifications in pump inlet, the blockage was caused
by gradually closing outlet valve. Consequently, defi-
nition of competence estimate functions can be based
on position of the valves — the more is inlet valve
closed the higher is measurement competence to cavi-
tation (by analogy for blockage). Of course, positions
of valves do not define the state absolutely clearly
(their position is linearly changed while pump condi-
tions do not change linearly). One more criterion can
be used to make desired competencies more precise. A
water flow rate was measured during the pump ex-
periments simultaneously with stator current meas-
urements. The flow rate measurement is competitive
condition monitoring technique and can not be used as
an extra attribute during learning phase. Nevertheless,
it can help to set down competence estimate classifica-
tion of the individual training examples.

3.1 Reached Results And Their Com-
parison To Results Of Traditional
ML Algorithms

There was measured a centrifugal pump with magnetic
coupling during experiments. The results achieved by
the suggested competence estimate method are sum-
marised in Tables 1 and 2. They are compared with
results achieved by two other well-known ML tech-
niques — neural nets and ID3. Both methods dealt with
single valued classifications. Table 1 compares results
reached by pure ID3 method with results of compe-
tence estimate method combined with ID3 for return to
the crisp valued classifications. Likewise, Table 2
shows difference between correctness of NN method
and competence estimate method using NN to return to
single value classifications. There are two different
types of classification errors defined. The first type
simply involves all misclassifications. Error occurs
whenever the desired class does not agree with the

generated classification. The second type pays atten-
tion to such called hard errors only. These hard errors
do not occur whenever the suggested classification C,
is not equal to the original one C,, but C; is direct
predecessor or successor of Cy. It means, that class 0
can be classified as 1 or 3, the class 1 can be classified
as 2 and class 3 as 4 (all the statements hold vice versa
too). A hard error is not considered when it is correctly
assigned a fault scale and classification is directly
adjoined to the desired class.

DistrNo/ ID3 Comp. estimate
Method method with ID3
all [%] | hard [%] |all [%] |hard [%]
Distr 1 85 94 90 100
Distr 2 74 94 85 98
Distr 3 76 96 84 98
Average 78.3 94.7 86.3 98.7

Table 1 Correctness of pump fault classification — ID3 ap-
proach (all denotes correctness when all errors are consid-
ered, hard denotes correctness when only hard errors are

considered)

DistrNo/ NN Comp. estimate
Method method with NN

all [%] | hard [%] |all [%] |hard [%]
Distr 1 92 100 91 100
Distr 2 88 98 91 98
Distr 3 86 99 88 99
Average 88.7 99 90 99

Table 2 Correctness of pump fault classification — NN ap-
proach

There was used a set of 422 examples at all. The
competence estimate classifications based on input and
output valve positions and water flow rate were estab-
lished for all the measured examples. Then, there were
learned new competence estimate classifications for all
the examples (they were used for training and testing
at the same time). It was done in 422 steps, one of the
examples was always chosen, 6 nearest neighbours
were found within the rest of 421 examples and a new
competence estimate classification was assigned to it.
As far as the number of the nearest neighbours is taken
into consideration, 6 neighbours showed to be opti-
mum number for given amount of examples. The
weight array w was set in conformity with correlation
between individual attributes and the desired class
(w=[2,1.6,1.4,1.2,1,0.8, 0.8, 0.8]). Finally, decision
trees had to be generated and neural nets learned.
Three different random distributions were used for this
purpose, since the examples can not be used for train-
ing and testing at the same time when the decision
trees are generated. The training set consisted always
of 322 examples and testing set included the remaining
100 examples. The relation between the desired classes
and classifications is shown in Table 3 (600 testing
examples — 3 distributions with 100 examples, 2 ap-
proaches). The hard errors are marked out in bold.

[Classy | o | 1 | 2 | 3 | 4 | Avg |




Classi- COTIT.
fication [%]
0 236 9 0 5 0 94 .4
1 13 15 0 0 0 53.6
2 2 1 129 0 0 97.7
3 7 0 3 41 12 65.1
4 0 0 2 16 | 109 84.6

Table 3 Confusion matrix for competence estimate method
with ID3 and NN

3.2 Method Modification

There exist many possible changes of dealing with
estimates of class competence indeed. One more
method modification was practically implemented. In
the first instance, three etalons of marginal classifica-
tions (normal state, cavitation, and blockage) were
determined. They were computed as average values of
attributes taken from measurements with extreme posi-
tion of valves. As soon as there are etalons of the mar-
ginal classes established, competence of individual
examples to classes can be expressed in accordance
with their distances to these etalons.

Having distances d0, d1 and d2, values of compe-
tence estimate functions are calculated as relative
similarity measures to introduced etalons. Similarity
measure is introduced as an inverse of distance from
the etalon:

1
A

A d i

P,_ = ﬁ,l = 0,1,2

2.

=0 d .

The closer the example image to a class etalon in

attribute space is the higher value of the appropriate
probabilistic function. At the same time it holds:

> pl=

Transformation of competence estimate classifica-
tion values to the single valued design is done again by
ID3. Experimental results achieved by this approach
are shown in Table 4.

DistrNo/ | Modified method

Method | all [%] |hard [%]

Distr 1 84 98

Distr 2 80 97

Distr 3 80 98

Average 81.3 97.7

Table 4 Correctness of modified competence estimate
method

This modified method does not reach as high abso-
lute correctness of classification as the method using
competence estimate functions, but it still shows better
results than ID3 and NN methods applied directly to
the attribute set. In comparison to the competence
estimate method, it does not demand such profound
background knowledge. There just have to be known

enough cases representing all marginal fault states and
the normal state. Consequently, the modified method
can be applied whenever it is too difficult to design
commensurate competence functions.

4 Conclusion

In this paper, there has been proposed a new compe-
tence estimate approach to process fault diagnosis. The
method is based on well-known machine learning
techniques, the originality of the approach is in their
combination in conjunction with the competence esti-
mate classification. The basic source of the compe-
tence estimates for the training set of examples is
background knowledge available due to the setting of
the experimental environment. This does not have to
be true in general, namely in the real conditions. That
is why, there has been suggested a modification of
presented method which enables processing of tasks
that are hard to be decomposed according to class
competence estimate method scenario.

The method was applied on monitoring process re-
sults in order to detect possible fault states. The results
obtained indicate that it is possible to diagnose certain
pump problems without any additional instrumenta-
tion, i.e. the set of the on-line measured attributes
offers a good potential for industrial diagnostics of
pump defects when combined with suggested method.
Moreover, a comparison of correctness of classifica-
tions proves that the suggested method shows better
results than direct application of traditional ML tech-
niques.
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