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Abstract: Onset and progression of a genetically condi-
tioned disease depend not only on genes themselves, but
mainly on their expression during transcriptional and pro-
teosynthetic process. Monitoring gene expression merely
at its transcription level often proves insufficient for an au-
tomated disease understanding and prediction. An integra-
tion of diverse high-throughput measurements and prior
knowledge is needed to capture gene expression in a holis-
tic way. In this paper, we apply a recent matrix factor-
ization integration method to build a plausible and com-
prehensive predictive model of an outcome or progress
of myelodysplastic syndrome, a blood production disease
often progressing to leukemia. We propose an efficient
learning methodology that enables to maximize predic-
tive performance and keep the main assets of the orig-
inal method. The resulting model shows a comparable
predictive accuracy with a straightforward data integra-
tion method while being more understandable and com-
pact. The identified gene expression regulatory units with
the best predictive performance will be subject of further
biological analysis.

1 Introduction

A lot of severe diseases are genetically conditioned. The
outcome or progress of such a disease depends not only
on the patient’s genome, but also on the manifestation
of certain genes. The overall gene activity during the
transcriptional-translational process is called gene expres-
sion (GE). It is the process through which genes synthe-
size their products and afflict the phenotype. It is possible
to sense the activity of a gene as the measured amount
of gene transcripts during its expression process. Current
technological progress enables to measure the activity of
thousands of genes simultaneously in one tissue sample.
One may so feel being capable of predicting the disease
outcome, progress or related issues based on acquired gene
expression data [7]. In other words, to build a molecular
classifier with particular genes as features, gene expression
levels as feature values and phenotype as target variable.
Nevertheless, recent studies suggest that such a molec-
ular classifier based solely on GE data is often not suffi-
ciently accurate nor understandable [5]. The lack of ac-
curacy can be caused by technical difficulties such as the
noise in data as well as immense number of features. Too

many features may lead to overfitting, not to mention the
features are often redundant, irrelevant or highly depen-
dent. As a reaction to this observation, the prevailing trend
in GE data classification is focused on considering entire
sets of genes rather than particular genes as the features
[1, 8, 11, 15]. The gene sets are related to known or yet
unknown biological processes as gene transcription regu-
lation or metabolic pathways. Current effort is to refor-
mulate GE features to gene sets and build models upon
whole biological processes. Resulting models should be
more precise, robust and, of course, biologically meaning-
ful and more understandable for the experts.

But still, the results of set-level models may turn out
disappointing. Gene expression is a complex process with
multiple phases and components, which makes measure-
ment of gene activity non-trivial. The acquired data are
often confusing in their nature and difficult to interpret and
apply. Current molecular biology addresses this difficulty
through monitoring the activity of gene expression within
multiple components at more stages of the process. The
multilevel measurement of GE results in potentially more
informative, but much larger data. Therefore another chal-
lenge for data analysis raises. A meaningful and compre-
hensive integration of multiple measurements or multiple
data sources is desirable.

In this work we propose a robust classification frame-
work for knowledge-based integration of molecular ex-
pression data. Currently, our quantitative measurements
cover two fundamental transcript types: messenger RNA
(mRNA) and microRNA (miRNA), both the crucial com-
ponents of the overall gene expression process. mRNA
serves as a carrier of genetic information from DNA to
proteins. miRNA is a small non-coding molecule acting
in transcriptional and post-transcriptional regulation, often
hastening mRNA degradation and inhibiting translation of
a complementary mRNA into protein. Our challenge is
to integrate the measurements of these different types of
ribonucleic acids in a biologically meaningful way with
great regard to the predictive accuracy of resulting mod-
els. The integration is driven by the existing knowledge
on miRNA targets and gene-gene interactions. The ulti-
mate goal is a valid and robust decision support tool for
immediate use in clinical or experimental practice.

The framework is tested on a particular domain of
myelodysplastic syndrome (MDS) [23]. The data were



provided by the Institute of Hematology and Blood Trans-
fusion in Prague. MDS obstructs blood stem cells in bone
marrow from maturation, resulting in shortage of healthy
blood cells. Consequent symptoms are anemia, increased
susceptibility to bleeding and infection. What is more,
great deal of MDS patients progress to treatment resis-
tant acute myeloid leukaemia. Although many patients are
asymptotic, the leukaemia may come out, though. An-
other issue, reflected in the data is the chromosome 5q
deletion syndrome (del(5q)). del(5q) has similar symp-
toms as MDS, but mostly does not result in leukaemia.
Therefore the del(5q) patients without MDS require differ-
ent treatment than those with MDS. If this is not confusing
enough, del(5q) may progress in MDS. It is evident, that
sharp discrimination between healthy and afflicted patients
and between the above-mentioned syndromes is needed.

2 Domain description and formalization

Gene expression is the overall process of transferring in-
formation from the genome towards the tangible signs
of the individual, which are generally called phenotype.
During the process, the gene is firstly transcribed into
the molecule of messenger RNA (mRNA), which subse-
quently migrates towards the ribosomes, where it is trans-
lated to a protein. The protein levels determine the final
phenotype. GE is most often monitored in its transcrip-
tional phase since the transcript level is easiest to measure.
The phenotype prediction stems from the basic assumption
that a higher amount of detected mRNA implies a higher
amount of translated protein, and therefore higher mani-
festation of respective gene. Currently the most popular
methods for measuring expression level of the genes are
the microarray and RNA-Seq technologies, which enable
measuring the activity of thousands of genes in parallel.

As mentioned before, cellular pathology is still not well
explored, and therefore it is often unclear which of the
thousands of genes are disease related. Analyzing them
all may lead to overfitting. What is more, the phenotype
is not afflicted by the genes separately, but there is a com-
plex synergy of involved genes. The expression activities
of particular genes are often linked together, while tran-
scription factor (proteomic functional product), synthe-
sized according to one gene, may control, i.e. upregulate
or downregulate, the transcription of several other genes.
That is why one aims at analyzing GE data in terms of
gene sets or functional units, based on gene regulatory net-
works. The gene-gene interaction networks are partially
discovered and stored in genomic knowledge bases. The
GE data are reformulated in new features, corresponding
to the gene sets or heterogeneous biological process units,
with the aid of certain genes function already known. The
prior (background) knowledge is utilized to control or val-
idate the discovery of novel knowledge. Its application
results in more accurate, robust and biologically plausible
predictive and descriptive models.

Howeyver, correlation between the amount of mRNA as
the gene transcription product and the amount of protein
as the gene translation product is often much weaker than
expected [17, 25]. For that reason the attempt to improve
model accuracy through gene set features may often fail.
Gene expression process is subdued to more regulatory
mechanisms than protein-gene pre-transcriptional regula-
tion mentioned above. One of the essentials is gene post-
transcriptional inhibition through miRNA. miRNA regu-
lators are short (22-nt long RNA) sequences of noncod-
ing RNA with crucial role in GE process. Despite its
undeniable impact, miRNA was discovered not long ago
[16], hence it is subject of intensive biological interest.
The molecule of miRNA binds to mRNA molecule, sup-
pressing its further functions. The amount of transcribed
mRNA is thus reduced, and the expression of correspond-
ing gene is put down. Malfunction of even one miRNA
sequence regulator may cause a severe disease [19]. It is
not an easy quest for molecular biologists [12] and bioin-
formaticians [26] to determine which mRNA sequences
target a particular gene. This research is referred to as tar-
get prediction, an increasing number of the validated and
predicted miRNA-gene interactions is available in public
target databases such as [6, 24]. The amount of miRNA
is measured by miRNA microarrays working in the anal-
ogous way as mRNA microarrays. Still more labs issue
the miRNA measurements along with the common mRNA
profiles in order to capture GE process at more levels and
in a broader systematic view [18].

Nevertheless, in order to exhaustively utilize all the
advantages contained in simultaneous measurement of
mRNA and miRNA expression levels (features) on the
same set of samples, one needs to engage the prior knowl-
edge about the interaction between particular miRNA and
mRNA molecules respectively. One miRNA sequence can
target a mRNA code associated with more genes and con-
trariwise, one gene can be regulated by more miRNAs.
Henceforth, the analysis of GE data must be led through
entire gene-miRNA modules (regulatory units). The inte-
gration of mRNA and miRNA features is a non-trivial task
due to several reasons: a) the relationship between miR-
NAs and genes is many-to-many, so the brute force search
in known or possible interactions would lead to combi-
natorial explosion, b) many miRNA-gene interactions are
false positive, all the miRNA sequences have not even
been discovered, c) little is known about the shape, role
and occurrence of modules in the miRNA-gene regula-
tion system. Accordingly, an intelligent method of miRNA
and mRNA feature integration should consider the known
miRNA-gene interactions and confirm them based on mea-
sured data. Finally, based on relevant interactions it would
identify present GE regulatory modules. As for the pur-
pose of classification, the last but not least task is to refor-
mulate the data samples in terms of learned modules.

Our challenge is to provide such an integration method
for the myelodysplastic syndrome data, acquired through
mRNA and miRNA microchips. The method should take



into account the recent knowledge and model the regula-
tory function units with subsequent use in diagnostic or
treatment classification tasks. Let &4 = {gi,...,gms} be a
the genes, whose expression activity is sensed through the
mRNA microarray platform, Z = {ry,...,ryu } be known
miRNA sequences detected through the miRNA platform,
& = {s1,...,sn } be the interrogated samples (tissues, pa-
tients) and % = {uy,...,ux } be GE regulatory units or bi-
ological processes. Then x%: ¥ x . — R is the activ-
ity of measured genes within particular samples in terms
of mRNA, x* : # x ¥ — R is the activity of measured
miRNA regulators within the samples. & : ¥ x ¥4 — B
represents known protein-gene regulatory network. The
network can be seen as a graph with the genes as vertices
and the known interactions as edges. € : Z x ¢ — B rep-
resents the known miRNA-gene control system. It can be
interpreted as a bipartite graph, with the genes and miR-
NAs as vertices and interactions between miRNA regula-
tors and targeted genes. The integration method should
take into account these four data sources and knowledge
inputs respectively and provide an output in the form
1A XY xS XU — R, ie. the virtual expression of
the entire set of miRNA-gene regulatory modules.

3 Related work

The most straightforward and intuitive way to integrate the
data from mRNA and miRNA platforms, measured on the
same set of samples, is a mere concatenation of these two
sets of RNA profiles for each sample [13]. The miRNA
measurements are viewed as just another kind of features
besides the mRNA profiles. But the data integrated in
such a blind way are unsurprisingly larger than simple
mRNA data sets, and thus liable to overfitting or noise
as mentioned above, not to mention poor interpretability
of the resulting model. Additionally, certain gene fea-
tures (MRNA) and miRNA features are highly associated
as miRNA performs the regulation of gene expression. But
these relations may not be visible in the data, as miRNA
inhibition of a gene displays more in the amount of the
synthesized protein, rather than in the momentary concen-
tration of its transcript (mRNA). Therefore the utilization
of the known miRNA-gene interactions is advisable.

[9] presents an interesting tool for inferring a disease
specific miRNA-gene regulatory network, based on prior
knowledge and user data (miRNA and mRNA profiles).
However, this method does not address the way to break
down the large inferred network into smaller regulatory
units, which are essential for subsequent classification.
The method of data specific identification of miRNA-gene
regulatory modules is proposed in [20] and [22], where the
modules are searched as maximal bi-cliques or induced
as decision rules respectively. But none of these meth-
ods gives an intuitive way to express the identified mod-
ules within the sample set. Contrariwise, [10] provides
a black box integration procedure for several data sources

as mRNAs, miRNAs, methylation data etc., with an imme-
diate classification output. Nevertheless, this method has
no natural interpretation of the learned predictive models,
which is unsuitable for an expert decision-making tool.
[27] presents a computational framework for integration
of multiple types of genomic data to identify miRNA-
gene regulatory units by the means of multiple nonneg-
ative matrix factorization (NMF). Unlike the other above-
mentioned methods, the multiple NMF-based framework
utilizes the gene-gene interaction knowledge as well as
the miRNA-gene interactions. The identified GE regula-
tory units thus consist both of the miRNA-gene regulatory
module and the gene-gene regulatory module. The authors
evaluate their resulting co-modules in terms of biological
relevance, enrichment analysis but not as to the predictive
accuracy. However, NMF is an intuitive method of data
modeling with a direct sample transformation to the new
feature space.

4 Materials and methods

For the reasons mentioned above, the first step in seek-
ing a way for integration and classification of MDS data
will be sparse network regularized multiple nonnegative
matrix factorization (SNMNMF) from [27]. This section
briefly describes the family of NMF methods in general
and specifies the applied SNMNMF method. Finally, the
SNMNMF application in classification is explained.

4.1 NMF

NMF [14] is a class of methods for data modeling and ap-
proximation widely used in other machine learning appli-
cations such as computer vision, text mining. Let X¢ €
RV*M® be a data matrix of gene expression, measured as
amount corresponding mRNAs, with N samples and M$
features (genes), x;; be expression of gene g; in sample s;.
NMF then approximates the data as a linear combination
of K feature subsets X8 ~ WH, with H € REXM® 3 goft
membership assigning the features into K feature subsets
or modules and W € RV*K the weight matrix assigning a
weight w;; to each j-th feature subset within i-th sample.
The of W are commonly understood as the data samples
in the new feature (module) representation [21].

Computation of the matrices W and H is formulated as
an optimization problem. The objective is some kind of
metric between the original data matrix X and its approx-
imation WH. The basic constraint is the nonnegativity
W,H > 0. Due to such a vague definition of NMF there
is really huge amount of factorization methods and appro-
priate optimization algorithms.

4.2 SNMNMF

Let X2 € RV*M* be a data matrix of gene (mMRNA) expres-
sion and X* € RV*M" be a data matrix of miRNA activ-
ity, with N samples and M$ genes and M* miRNA regula-
tors. The multiple matrix factorization models these data



as a linear combination of K gene-gene regulatory mod-
ules HS € RE*M* and K miRNA-gene regulatory modules
HH € REOM" [27], je. X* = WHE and X* = WH¥ re-
spectively. The unification of k-th gene-gene module and
k-th miRNA-gene module constitutes a miRNA-gene reg-
ulatory comodule. The weight of k-th comodule in n-th
data sample encodes matrix W € RV*X,

SNMNMF factorizes both data matrices in parallel,
while the prior knowledge is incorporated to the factoriza-
tion through network regularization constraints. The over-
all minimized objective function looks as follows [27]:

X — WHE 7.+ X — WH |
— A Tr (HEAHET) — 2, Tr (H*BHS")

2 2
enWiz+n (T [+ 2 ).

where A € BM**M® s the gene-gene regulatory network
matrix, with a;; = 1 if and only if the i-th gene and j-th
gene interact, B € BY" *M s the miRNA-gene regulatory
network matrix, with b;; = 1 if and only if i-th miRNA
regulates j-th gene, h? and h® are the j-th column of H#
and HE# respectively. The third and fourth terms of the
objective introduce the prior knowledge, i.e. A, and A,
encode the strength of known miRNA-gene (B) and gene-
gene (A) interactions, respectively. The fifth term limits
the growth of W, while the last one encourages sparsity.
The objective function is minimized by gradient descent
through alternating updates of W and Hs [27]. A, A4, 71
and 7 are the unknown parameters of the model.

4.3 Classification framework

Although SNMNMF was not primarily intended as a fea-
ture extraction method with subsequent classification, its
use in predictive modeling is intuitive. As the weight
matrix W represents activity of the comodules in partic-
ular sample, it may be considered as a projection onto
a new feature (comodule) space. Nevertheless, in order
to avoid selection bias, while estimating the classifica-
tion error over the transformed data, one must not incor-
porate the testing samples into the process of integration
parametrization. In the other words, matrix factorization
has to be performed on training data only, whereas the test-
ing data are projected into the factorization just learned.
Therefore a projection of testing data into the existing
transformation (factorization) is needed. Such a projec-
tion, we used, is quite intuitive, though. The comodules
encoded in matrices H8 and H*, are learned on training
data through the iterative updates, alternating with updates
of weight matrix W. Subsequently, the comodule matri-
ces learned are fixed and freshly initialized weight matrix
Wi;esr is computed by updating only W, based on test
data and fixed matrices HS and H*. W, is then consid-
ered as the test data in comodule feature space.
SNMNMF seems to be suitable for classification tasks
thanks to its natural interpretability, intuitive test data pro-

jection and plausible incorporation of prior knowledge.
However, its stability with regards to the random initial-
ization of matrix factors and parameter settings remains
debatable. Another challenge is the choice of proper num-
ber of comodules K, the metaparameter of the algorithm.
We set K as the number of “natural” clusters in the miRNA
profiles. In order to find this number, we clustered the
miRNA profiles by k-means algorithm and set the number
of clusters based on Hartigan heuristic, i.e. the sharpest
decline of clustering homogeneity. This choice was done
independently in each of 10 tasks.

5 Experiments

In this section, we describe the available MDS data and
specify the experimental protocol that allows us to set the
internal parameters of SNMNMF and evaluate its predic-
tive potential in an unbiased way. Finally, the results and
their possible biological interpretation will be discussed.

5.1 Data

The data provided by the Institute of Hematology and
Blood Transfusion in Prague consist of microarray mea-
surements of mRNA and miRNA profiles. The measure-
ments were realized using Illumina chips. The mRNA
dataset has 16,666 attributes representing the GE level
through the amount of corresponding mRNA measured,
while the miRNA dataset has 1,146 attributes representing
the activity of particular miRNA regulators.

The measurements were conducted on 75 tissue sam-
ples categorized according to the several conditions: 1)
tissue type: peripheral blood (PB) CD14+ monocytes vs.
bone marrow (BM) CD34+ progenitor cells, 2) presence
of MDS or del(5q), 3) treatment stage: before treatment
(BT) vs. during treatment (DT). Henceforth the samples
can be broken into 10 categories. The categories with the
actual number of samples are shown in Table 1.

Healthy 10

5 BT | 9

PB ¢ DT 13
non 5¢- BT | 4

DT | 5

Healthy 10

5 BT | 11

BM ¢ DT 3
non 5q- BT | 6

DT | 2

Table 1: The overview of MDS classes

The domain experts defined 10 binary classification
tasks with a clear diagnostic and therapeutic motivation.
There are 5 tasks for each tissue type, the numbers of sam-
ples are shown in parentheses:



1. PB1: healthy (10) vs. afflicted in PB (31),

2. BM1: healthy (10) vs. afflicted in BM (24),

3. PB2: healthy vs. untreated in PB (13),

4. BM2: healthy vs. untreated in BM (17),

5. PB3: healthy vs. untreated with del(5q) in PB (9),

6. BM3: healthy vs. untreated with del(5q) in BM (11),
7. PB4: healthy vs. treated in PB (18),

8. BM4: healthy vs. treated in BM (7),

9. PBS: afflicted with del(5q) (9) vs. afflicted without
del(5q) in PB (22),

10. BMS: afflicted with del(5q) (8) vs. afflicted without
del(5q) in BM (16).

Considering the prior knowledge, we had downloaded
the interactions between genes and miRNAs from miR-
Walk database [6], while the knowledge about interactions
between particular genes we obtained as the interactions
of their corresponding proteins from [2].

5.2 Experimental procedure

We used three different classification algorithms to learn
on resulting comodules: 1) naive Bayes, 2) support vector
machine (SVM) and 3) k-nearest neighbor (kNN). This se-
lection is to avoid dependence of experimental results on
a specific choice of a learning method.

For each task, SNMNMF needs to be correctly
parametrized first. When the parametrization is available,
the raw data can be projected onto comodules. Finally,
the three learners are applied in the transformed comodule
space and evaluated using 5-fold cross-validation.

The proper parameter configuration of SNMNMF was
reached as follows. The parameters y; and }» were set
to 5 as recommended by [27]. The “knowledge-strength”
parameters A, and A,, which seemed crucial for predic-
tive accuracy, were tuned through 5-fold internal cross-
validation for each particular experiment. For each pa-
rameter configuration, a factorization process was run
on training subsets of the internal cross-validation and
the predictive accuracy of learned comodules was esti-
mated on testing subsets for each of the learners. The
locally optimal parameter configuration has been vali-
dated for each of the learners by external 5-fold cross-
validation. Eventually, this validated accuracy was con-
sidered as the final accuracy estimate reached by the op-
timized matrix factorization. The values of parameters
were chosen from {5-107%,5-107%,1073,0.01} for A,
and {107%,0.01,0.05,0.1,0.2} for A,. The number of
iterations of SNMNMF factorization was set to 50. For
each classification task the experiment was rerun from 15
initializations.

To ensure equal conditions within the course of each
experiment, the matrix factors H8, H* and W were ran-
domly initialized only once, on the experiment beginning.
The initialized matrix factors were subsequently passed to
the folds of cross-validation as follows. The sample-size
invariant comodule matrices H® a H* were passed un-
changed. In the weight matrix W representing the data
samples in the comodule space, only the rows that link to
the particular validation fold were passed.

To sum up, 4 x 5 = 20 different parameter configura-
tions were evaluated. Each parametrization was run 15
times for each of 5 internal folds. This process was re-
peated in each of 5 external folds. Having 10 tasks,
we performed 75,000 individual factorizations. The best
parametrization was found for each task, external fold and
random initialization, which gives 750 A, and A, pairs.

The SNMNMF predictive accuracy was compared with
accuracy of its several straightforward alternatives. Firstly,
we used only mRNA features to classify the samples.
The goal was to compare SNMNMF with the most com-
mon GE classification technique. Secondly, we used only
miRNA features to classify the samples in order to see di-
rect applicability of miRNA for MDS prediction. Eventu-
ally, we evaluated the blind merged integration method,
concatenating the mRNA and miRNA features. This
reference allows us to study the asset of the advanced
knowledge-driven feature extraction taken in SNMNMF.
All these classification techniques were assessed through
the three learners and 5-fold cross-validation.

The experiments were implemented in Python with the
aid of numerical library NumPy [4] and machine learning
library Orange Biolab [3].

5.3 Results

We obtained 450 predictive accuracy values (PAs) for SN-
MNMF integration method (10 tasks, 3 learners, 15 initial-
izations). To compare it with the reference techniques we
used the median PAs taken over the initializations. For the
three reference techniques we obtained 30 PAs (10 tasks,
3 learners). The absolute accuracy of the compared classi-
fication techniques is summarized in Tables 2-4. The rel-
ative accuracy comparison of SNMNMF integration and
the blind merged integration method is in Figures 1-3.

5.4 Discussion

The individual methods were evaluated for 10 classifica-
tion tasks and 3 different learners, i.e., in 30 experiments.
The results suggest that none of the methods shows clear
dominance over the others. To obtain a global picture,
each pair of the methods is mutually compared in every
single experiment. The overall pairwise accuracy com-
parison of particular methods is graphically represented in
Figure 4. To exemplify, the miRNA features dominate the
mRNA features in 15 experiments, tie on 5, and surrender



task | mRNA | miRNA | merged | SNMNMF
PB1 0.85 0.88 0.88 0.88
BM1 0.94 0.97 0.97 0.97
PB2 0.75 0.76 0.70 0.80
BM2 0.97 1.00 1.00 1.00
PB3 0.85 0.80 0.85 0.85
BM3 1.00 0.95 0.95 0.95
PB4 0.83 0.78 0.78 0.78
BM4 0.95 0.87 0.87 0.93
PB5 0.93 1.00 0.97 0.94
BMS5 0.87 0.96 0.96 0.95

Table 2: Absolute PAs for evaluated classification tech-
niques in the view of naive Bayes classifier

task | mRNA | miRNA | merged | SNMNMF
PB1 0.76 0.76 0.76 0.76
BM1 0.74 0.77 0.74 0.77
PB2 0.90 0.77 0.90 0.90
BM2 0.93 1.00 0.96 1.00
PB3 1.00 0.90 1.00 0.88
BM3 0.95 1.00 0.95 1.00
PB4 0.76 0.76 0.80 0.72
BM4 0.95 0.95 0.95 0.93
PB5 0.71 0.71 0.71 0.71
BM5 0.79 0.87 0.79 0.87

Table 3: Absolute PAs for evaluated classification tech-
niques in the view of SVM classifier

in 10. This observation indicates that miRNA measure-
ments have a real merit compared to the standard GE clas-
sification based on mRNA features. This may be caused
by the key role of miRNA regulation in the examined dis-
ease or by the substantially smaller number of features in
case of miRNA classification, which fundamentally pre-
vents overfitting. However, the tight miRNA win confirms
that mRNA information also has its worth. Concatenating
miRNA and mRNA features together does not improve the
accuracy, though. The blind mRNA concatenation to the
auspicious miRNAs immensely increases feature space,
which probably leads to overfitting.

Technically, the SNMNMF-based classification sur-
passes the reference techniques. But still, there are
frequent cases, when namely the merged integration or
miRNA model outperforms it. We conclude that the in-
tegrative SNMNMF yields predictive results clearly not
worse than its counterparts. The SNMNMEF results seem
hopeful with respect to its biologically sound feature com-
pression and locally-optimal parameter configuration only.

Of the different tasks and comodules given, biological
relevance can be observed in several cases. miR-451 was
previously reported as positive regulator of erythroid cell
maturation and recently we have detected increased ex-

task | mRNA | miRNA | merged | SNMNMF
PB1 0.98 0.80 0.98 0.91
BM1 0.89 0.97 0.89 0.94
PB2 0.88 0.73 0.88 0.90
BM2 | 0.90 0.97 0.90 0.97
PB3 0.85 0.75 0.95 0.85
BM3 0.95 1.00 0.95 0.95
PB4 0.78 0.57 0.77 0.81
BM4 | 0.88 0.93 0.83 0.93
PB5 0.97 0.97 0.97 1.00
BMS 0.92 1.00 0.92 0.96

Table 4: Absolute PAs for evaluated classification tech-
niques in the view of kNN classifier
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Figure 1: naive Bayes

pression of miR-451 that was not affected by lenalidomide
treatment in both BM CD34+ cells and PB monocytes of
MDS patients with del(5q). In task PB1 a link of miR-451
to hbb (hemoglobin, beta), hbel (hemoglobin, epsilon 1)
and hbql (hemoglobin, theta 1) genes has been found in
the same comodule. miR-451 appears also in task PB3,
where the interaction of jointly (in the same comodule) re-
ported entities, namely bax and c¢d82 (p53 signaling path-
way), rabl1b (member of RAS oncogene family), cdkn2d
(cell cycle), grb2 and mapkll (MAPK signaling pathway)
and piml (acute myeloid leukemia), could act in develop-
ment of MDS.

miR-150 and miR-146a are known to be involved in
hematopoiesis and MDS with del(5q), respectively. So
called minor versions of those, miR-150* and miR-146a*,
are coexpressed in the same comodule in task BM2; and
downregulation of miR-150* has also been detected in BM
CD34+ cells of del(5q) MDS patients before treatment
compared to healthy donors. Of the genes expressed in
that comodule, bcll la (B-cell lymphoma/leukaemia 11A),
which encodes zinc finger protein, is of importance as
it functions as a myeloid and B-cell proto-oncogene and
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therefore may play an important role in leukaemogenesis
and hematopoiesis. Gene functional classification analysis
of the genes of that comodule revealed some other genes
(znf319, zscan2, znf467, znf585a, znf32) coding for yet
unidentified zinc finger proteins which may be involved
in transcriptional regulation, however, their role remains
speculative.

Of the miRNAs jointly appeared in task BM4, miR-154
and miR-381 were significantly upregulated in BM cells
of MDS del(5q) and their link to rab23 (member of RAS
oncogene family) and wnt9b (wingless-type MMTYV inte-
gration site family, member 9B), both involved in Hedge-
hog signaling pathway, which has also been implicated in
the growth of some cancers, is to be further explored.

6 Conclusion

The increasing amount of genomic data measured on dif-
ferent stages of expression process, along with the rising
availability of prior knowledge about GE regulation, give

SNMNMF

11/10/9

15/5/10

16/8/6

15/5/10

9/11/5

Y

mRNA

Figure 4: Pairwise accuracy comparison graph. The nodes
represent particular feature sets, an edge from node a to
node b, annotated as x/y/z means that method a outper-
forms method b in x experiments, in y ties and in z looses.

us the challenging opportunity to build robust predictive
models based on entire biological processes. Such mod-
els should be more comprehensible and potentially more
accurate than standard GE classification based solely on
one type of measurement, mostly the amount of mRNA.
The integration of heterogeneous measurements and prior
knowledge is non-trivial, though.

In this work we classify myelodysplastic syndrome pa-
tients. Two types of measurements are available for each
sample: the amount of mRNA corresponding to gene
transcription and the amount of miRNA corresponding to
gene translation regulation. We investigate the possibil-
ity to utilize the biggest deal of information contained
in the provided data through their integration with avail-
able prior knowledge, namely miRNA targets and protein-
protein interactions. We propose the classification frame-
work based on multiple matrix factorization. The result is
a knowledge-enriched predictive model.

A large number of experiments was run to obtain an un-
biased accuracy of the integrated model. The results in-
dicate that integration of the heterogeneous measurements
together with prior knowledge has its merit and prospects.
The knowledge-based classification yields possibly better
but clearly not worse results than simple data concatena-
tion or omitting of one type of measurement. What is
more, the integrated models are more comprehensive and
interpretable. It is obvious that predictive accuracy of the
SNMNMF and any other integrated model can further be
increased by utilization of the most prospective raw fea-
tures, in the case of MDS it would namely be the most
predictive miRNAs.

But still, there is a lot of future work. The first field
of improvements concerns algorithmic enhancements.
Within SNMNMEF it is desirable to employ an informed
parameter search instead of the actual non-informed com-



plete search. Another possibility is to develop a less pa-
rameter dependent integration method. We intend to use
the prior knowledge to control pseudorandom construction
of weak classifiers vaguely corresponding to the individ-
ual biological processes. The weak classifiers will later be
merged into an ensemble classifier.

Further, the gene regulatory network shall be extended.
Currently it contains protein-protein interactions only, not
considering the interactions between genes and their tran-
scription factors. Another challenge is to employ epige-
nomic data, namely DNA methylation.
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