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Jǐŕı Kléma, Frantǐsek Malinka, and Filip Železný
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Abstract. We motivate and define the task of semantic biclustering. In
an input gene expression matrix, the task is to discover homogeneous
biclusters allowing joint characterization of the contained elements in
terms of knowledge pertaining to both the rows (e.g. genes) and the
columns (e.g. situations). We propose two approaches to solve the task,
based on adaptations of current biclustering, enrichment, and rule and
tree learning methods. We compare the approaches in experiments with
Drosophila ovary gene expression data. Our findings indicate that both
the proposed methods induce compact bicluster sets whose description is
applicable to unseen data. The bicluster enrichment method achieves the
best performance in terms of the area under the ROC curve, at the price
of employing a large number of ontology terms to describe the discovered
bicluster.

1 Introduction

The objective of biclustering (or block-clustering, co-clustering) [19] is to find
submatrices of a data matrix such that these submatrices exhibit an interesting
pattern in their contained values; for example their values are all equal whereas
the values in the containing matrix are non-constant. Biclustering has found
significant applications in bioinformatics [13] and specifically in the context of
gene expression data analysis [9, 18]. In the latter domain, biclustering can reveal
special expression patterns of gene subsets in sample subsets. Numerous varia-
tions of biclustering have been considered, depending on whether the target set
of biclusters should cover the entire original matrix, whether the biclusters may
overlap mutually, etc.

By semantic clustering we refer to conventional clustering with a subsequent
step in which the resulting clusters are described in terms of prior domain knowl-
edge. A typical case of semantic clustering in gene expression analysis is clus-
tering of genes with respect to their expression, followed by enrichment analysis
where the clusters are characterized by Gene ontology terms overrepresented in
them. In [10] the authors blend these two phases in that they directly cluster
genes according to their functional similarities. The term semantic clustering
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was introduced on analogical principles in the software engineering domain [11].
It can be also viewed as an unsupervised counterpart of the subgroup discovery
method [24]. The semantic descriptions provide an obvious value for interpreta-
tion of analysis results, as opposed to plain enumeration of cluster elements.

Here we explore a novel analytic technique termed semantic biclustering,
combining the two concepts above. In particular, we aim at discovering biclus-
ters satisfying the usual biclustering desiderata, and also allowing joint charac-
terization of the contained elements in terms of knowledge pertaining to both
the rows (e.g. genes) and the columns (e.g. situations). This task is motivated
by the frequent availability of formal ontologies relevant to both of the dimen-
sions, as is the case of the publicly available Dresden ovary table dataset [1, 8].
Informally, we want to be able to discover biclusters described automatically e.g.
as “sugar metabolism genes in early developmental stages” whenever such genes
exhibit uniform expression in the said stages (situations). In [17], the authors
present a closely related approach, where the knowledge pertaining to both the
matrix dimensions is directly applied to define constraints to filter biclusters (the
authors use the more general term patterns). The user is provided only with the
interpretable biclusters whose description is compact.

Besides the novel problem formulation stated above, our contributions de-
scribed below include the proposal of two adaptations of existing computational
methods towards the objective of semantic biclustering and their comparative
evaluation on the mentioned publicly available dataset [8]. As usual in unsuper-
vised data analysis, the way to validate the methods statistically is not fully
obvious. Thus our proposed validation protocol represents a contribution on its
own right.

2 Two Candidate Approaches

In this initial study, we explore two approaches based on established techniques
which can be adjusted to fulfill the objective of semantic biclustering. Firstly,
we consider the natural workflow in which a biclustering algorithm is used first
and its results are subjected to enrichment analysis on both dimensions of the
produced submatrices. Secondly, we propose an approach based on the classical
symbolic machine-learning techniques known as decision rule and tree learning.

In what follows, we assume for simplicity that the subject of semantic biclus-
tering is a matrix A with dimensions m × n and binary elements ai,j ∈ {0, 1},
indicating the detected (1) or absent (0) expression of gene i in situation j.
Furthermore, we assume that each of the m genes (n situations, respectively) is
assigned a set of gene-ontology (situation-specific ontology) terms drawn from a
set of g ontology (s situation) terms.

2.1 Bicluster Enrichment Analysis

The enrichment approach to semantic biclustering stems from the binary ex-
pression matrix A. In the first step, it searches for a set of biclusters that best
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describe the input data. The goal is to find a small set of biclusters that cover
as many 1s as possible and as few 0s as possible. In other words, we search
for the most concise biset-based description that minimizes occurrence of false
positives and false negatives. The bicluster semantics is disregarded for the mo-
ment. In the field of biclustering it is a well-known problem that can be tackled
with approximate pattern matching [12, 14, 22], non-negative matrix decompo-
sition [25, 26], bipartite graph partitioning [7] or heuristic algorithms [5, 15, 20].
In our approach, we employed the well-known PANDA+ tool [12] to find the
initial concise description of the input data. The main parameter is the level of
accepted noise which may be used to balance between the size of the descrip-
tion (the number of biclusters and their size) and the quality of the description
(the amount of false predictions). A has to be transformed into the FIMI sparse
format [2] before calling PANDA+.

Algorithm 1: Bi-directional enrichment.

input : Am×n, ai,j ∈ {0, 1, NA}; // NAs for testing fields

1 GO; L; // gene and location ontology

output: ΠS ; // the matrix of gene and location p-values

2 /* Get list of biclusters, i.e., bi-sets of gene/location indices */

3 A ← convertToSparseFIMIFormat(A);
4 Π ← PANDA+(A);
5 /* Get actual genes and locations, e.g., from A row/column names */

6 M← getAllGeneNames(A); // all genes in A

7 G ← getAllGoTerms(GO,M); // GO transitive closure wrt M
8 N ← getAllLocationNames(A); // all locations in A

9 L ← getAllLocationTerms(L,N); // L transitive closure wrt N
10 g ← |G|; s← |L|; ΠS ← 0k×(g+s);
11 /* Annotate the individual biclusters */

12 for k ← 1 to |Π| do
13 for i← 1 to g do
14 ΠS

k,i ← enrichmentGet(Πk,genes,Gi,M,GO)

15 end
16 for j ← 1 to s do
17 ΠS

k,g+j ← enrichmentGet(Πk,locs,Lj,N ,L)

18 end

19 end

In the second step, the biclusters get annotated in terms of prior domain
knowledge, i.e., their semantics is revealed. In our case, we use gene ontology
(GO) terms [3, 6] to annotate the individual genes and the dedicated Drosophila
location ontology terms [1] to annotate the stages. Each non-trivial bicluster
(comprehending more than 1 gene and 1 stage) gets annotated by all the terms
(GO and situation ontology, respectively) whose enrichment exceeds the pre-
defined statistical significance threshold. In order to avoid this hyperparame-
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ter in our workflow, we propose to set the threshold automatically within the
permutation-based test, that compares the bicluster enrichment scores with the
scores reached in permuted gene expression matrix. The significance threshold
is set to guarantee that the false discovery rate for annotation terms in real bi-
clusters remains small. The individual terms get scored proportionally to their
statistical significance, i.e., each of the biclusters is described by a sparse real
vector of the term scores s1, s2, . . . , sg, sg+1, . . . , sg+s. The score si is positive iff
the i-th term is enriched in the given bicluster, it is 0 otherwise. We employed
the topGO Bioconductor package [4] to find the GO terms and Fisher test to
reveal the location ontology terms enriched in the individual biclusters.

The approach to semantic biclustering could as well be referred to as bi-
directional enrichment. The procedure pseudocode is in Algorithm 1.

2.2 Rule and Tree Learning

The alternative approach is based on a reduction of the problem to a classification-
learning problem. This entails a transformation of the original data matrix A
into an auxiliary binary matrix B of dimensions (m · n)× (g+ s+ 1). Matrix A
is unrolled into B so that each row of B corresponds to one element ai,j of A
and has the form

t1, t2, . . . tg, tg+1, tg+2, . . . tg+s, expression (1)

where the first g numbers are binary indicators of gene-ontology terms (acquiring
value 1 iff the corresponding term is associated with gene i), the subsequent s
numbers are analogical indicators of situation ontology-terms for situation j, and
the last number is the expression indicator for gene i and situation j and thus
equals ai,j . The transformation details are shown in Algorithm 2.

The next step is to learn a classification model to predict expression from
t1, . . . tg+s. To this end, B represents the training data with individual rows such
as (1) corresponding to learning examples with the last element being the class
indicator. The model is seeked in the form of a list of conjunctive decision rules
[16], each of which acquires the form

∧k∈Gtk ∧k∈S tk+g → expression (2)

where the rule conditions G ⊆ [1; g], S ⊆ [1; s] are learned selections of gene
and situation ontology terms. The rule stipulates that a gene annotated with
all the gene-ontology terms found in G is likely to be expressed in situations
annotated with all the situation-ontology terms in S. If no rule in the learned
rule set predicts expression, the rule set defaults to the no-expression prediction.

Consider the set P = G × S containing all the gene-situation pairs (i, j)
satisfying conditions of rule (2). It is easy to see that P forms a submatrix of A,
i.e. there exists a permutation of A’s rows and columns making P a rectangular
section of A. Indeed, G identifies a set of rows and S identifies a set of columns.
The conjunction in (2) is satisfied exactly by the genes in the intersection of G
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Algorithm 2: Unrolling A into B.

input : Am×n, ai,j ∈ {0, 1}
output: Bm·n×g+s+1, bi,j ∈ {0, 1}

1 /* Genes are represented by a set of FBgn identifiers */

2 M← getAllGeneNames(A); // all genes in A

3 G ← getAllGoTerms(M); // GO transitive closure wrt M
4 g ← |G|;
5 for i← 1 to m do
6 ∀x ∈ {1, . . . , g + s+ 1} : Tx ← 0; // initialization

7 for j ← 1 to g do
8 if term Gj is associated with geneMi then Tj ← 1;

9 end
10 for k ← 1 to s do // where s is a set of situation terms

11 associations ← find all associations in a set of situations for sk;
12 for ∀assoc ∈ associations do
13 Tg+associ ← 1; // where associ is an index of situation term

assoc

14 end
15 Tg+s+1 ← ai,k; // add expression indicator

16 Bi,∗ ← T ;

17 end

18 end
19 B← filterGoTerms(B, Θ); // due to a given threshold Θ;

and S, which is thus a rectangle.1 Therefore each rule such as (2) identifies a
bicluster in A.

Moreover, a rule set optimized for classification accuracy on training data
such as (1) will produce those biclusters of A which contain a high number of
elements with value 1. Indeed, perfect training-set accuracy is achieved if and
only if the biclusters represented by the rules in the rule-set collectively cover
all the 1-elements and no 0-element in A.

Summarizing the two observations, the learned rule set represents a set of
biclusters of A, each of which is homogeneous in that it collects positive indi-
cators of expression. Furthermore, each such bicluster is characterized by the
ontology terms G and situation terms S found in the corresponding rule such
as (2). Thus, the procedure described indeed conveys the semantic biclustering
task.

In addition, we propose an alternative to the described workflow, in which the
rule-set learner is replaced by a decision tree learner [16]. Each vertex in a learned
tree corresponds to one ontology term, and the test represented by the vertex
determines whether the term is among the annotation of the classified pair of
gene and situation. Since all the attributes (including the class attribute) of the

1 Note that this property essentially follows from the propositional-logic form of the
rule and would not hold true for the more general relational rules considered in [24].
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training data (1) are binary, also the learned tree is binary. Hence, there is exactly
one path in the tree with only positive branches; i.e. branches corresponding to
satisfying the condition in the source vertex. This unique path can be rewritten
as a single decision rule in the form (2) and thus represents a single semantic
bicluster. The main reason for exploring this alternative is that decision trees
are often claimed to exhibit performance superior to that of decision rule sets.

In our implementation of this approach, we used the JRip and J48 algo-
rithms from the WEKA machine-learning software [21] to learn the rule-sets
and decision trees, respectively.

3 Experimental Evaluation

Both biclustering and enrichment analysis are unsupervised data mining meth-
ods and the exact way to validate their performance is not obvious. For example,
perfectly homogeneous biclusters can usually be found at the cost of their very
small size. The size and homogeneity should thus be traded-off but their rela-
tive importance would have to be set apriori. Similarly, the discovered semantic
annotations may either represent genuine characteristics of the biclusters, or the
included terms may be enriched just by chance. Distinguishing apart these two
effects through a statistical test involves distributional assumptions which we
cannot guarantee.

We propose to solve the latter dilemma by measuring the quality of semantic
biclusters from the point of view of predictive classification. This assumes that
the available data is split randomly into a training partition and a testing parti-
tion. Semantic biclusters are found through the earlier described two approaches
on the training split. Each found bicluster collects genes and situations such that
the genes tend to be expressed in the situations. A legitimate interpretation of
the cluster’s semantic annotations is that other genes and situations not found
in the training set, but complying with the annotations should also exhibit ex-
pression. We thus employ the set of discovered biclusters as a predictive model of
expression of each combination of a gene and a situation on the testing set. We
then measure the area under the ROC curve (AUROC) achieved on the test set
and argue that this quantity is an unbiased and justified measure of quality of
the discovered set of biclusters. The former ROC curve applications to bicluster-
ing outcomes evaluated to what extent this outcome conforms to prior biological
knowledge and matches the outcome of other biclustering algorithms [23]. In
here, we evaluate generalization ability of the resulting set of biclusters rather
than their agreement with a gold standard which is often not available or difficult
to be defined.

The implementation of this validation protocol is straightforward for the rule
and tree learning approach (Section 2.2) as the semantic biclusters come in the
form of predictive classifiers. For the bicluster enrichment approach (Section
2.1), we propose to interpret the biclusters as classifiers in the following way.
Each testing combination of a gene and a situation is classified as positive iff the
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corresponding semantic description t1, t2, . . . , tg, tg+1, . . . , tg+s is matched by the
semantic description of any of the produced biclusters.

For a single bicluster, the matching is expressed as a scalar product of its
score vector with the binary term indicator-vector of the classified entry, and
this is done separately for the gene and situation ontology. The score vector of
a bicluster originates as follows. The term scores 0 if the term enrichment does
not reach the predefined statistical significance threshold. If the significance p-
value is below the threshold, the term scores −log10(pval). In summary, the gene
expression entry is classified as positive iff

〈s1, s2, . . . , sg〉 · 〈t1, t2, . . . , tg〉 ≥ θG
and at the same time

〈sg+1, . . . , sg+s〉 · 〈tg+1, . . . , tg+s〉 ≥ θS

where θG and θS stand for the respective minimum match thresholds. They
represent the trade-off between sensitivity and specificity of the unseen data
imputation procedure. The evaluated ROC curve is obtained by varying these
two thresholds. The semantic biclustering validation procedure is summarized
in Algorithm 3.

The proposed validation scenario conforms to the validation frameworks as
usual in machine learning. One exception from that is that the stage of splitting
data (the A matrix) into the training and testing sets needs to be different. In
particular the training set needs to form a submatrix, i.e. a rectangular section
of A, because a matrix is the assumed kind of input of the semantic biclustering
methods. We thus proceed by selecting a random rectangle within A covering
70% of its elements and representing the training set, while all other elements
fall in the testing set. The latter need not be rectangular as follows from the
proposed validation principle.

4 Results

We conducted our experiments on the Dresden ovary table [1]. The table captures
the distribution of different mRNA molecules in various cell types involved in
oocyte production in the ovary of female Drosophila melanogaster flies. The table
authors believe [8] that the resource can be used to gain insight into specific
genetic features that control the distribution of mRNAs and this insight may be
instrumental for cracking the RNA localization code and understanding how it
affects the activity of proteins in cells. In this problem, the dedicated situation
ontology (available from the same source) describes Drosophila ovary segments
and their developmental stages. The ontology is in fact a location term hierarchy
that binds the locations available in the Dresden ovary table by the relations
part of and develops from. Thus, the hierarchy deals with 100 terms. The gene
ontology was used in its standard available form [3, 4], there were 8,407 GO
terms available altogether. After minor data cleansing, the expression matrix has
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Algorithm 3: Predictive evauation of bi-directional enrichment.

input : ΠS ;Am×n, ai,j ∈ {0, 1,NA}; // NAs for training fields

GO; L; // gene and location ontology

parameters: θG; θS ; // gene and location term score thresholds

pperm; // p-val permutation threshold

output : Pm×n, pi,j ∈ {0, 1,NA} // the predicted expressions

1 /* Initialize predicted expressions, zeroes or NAs only */

2 P← A; P[P == 1]← 0;
3 /* Get GO term indication vectors for all genes */

4 M← getAllGeneNames(A); // all genes in A

5 TM ← getTermsForGenes(GO,M); // a binary m×g incidence matrix

6 /* Get location term indication vectors for all stages */

7 N ← getAllLocationNames(A); // all locations in A

8 TN ← getTermsForStages(L,N); // a binary n×s incidence matrix

9 /* Apply the individual biclusters */

10 for k ← 1 to |ΠS | do
11 /* turn p-values into scores, apply the permutation threshold */

12 for i← 1 to g + s do
13 if ΠS

k,i < pperm then ΠS
k,i = −log10(ΠS

k,i);

14 else ΠS
k,i = 0;

15 end
16 /* Search for the genes and stages covered by the bicluster, use

them to fill in P */

17 P[TMΠ
S
k,1...g > θG,TNΠ

S
k,g+1...g+s > θS ]← 1

18 end

6,510 rows (genes) and 100 columns (situations). For the rule and tree learning
approach, this matrix thus unrolls into 651,000 learning examples with 47.5%
positive data instances.

The bicluster enrichment method was run with the default PANDA+ param-
eters. The statistical significance thresholds were set to 0.05 for genes and 0.1
for situations. The method was run repeatedly with the following sets of match
thresholds: θG ∈ {1, 2, 5, 10} and θS ∈ {1, 2, 5, 10}. The results suggested that
precision decreases slowly with decreasing match thresholds while recall grows
quite rapidly. The best precision/recall trade-off is thus reached for the min-
imum match threshold values θG = θS = 1. The size of bicluster description
does not directly change with the match threshold values, their decrease raises
the number of genes and developmental stages matched by bicluster annotation
terms.

The rule and tree learning was performed with the default WEKA parame-
ters for JRip and J48. In order to work with a reasonable number of features,
feature selection was employed first. All the features (annotation terms) of the
train matrix (originating from B matrix) that occurred in fewer than 500 ex-
pression entries (the train matrix rows) were removed. The cut-off threshold was
found with the feature frequency histogram. Eventually, we worked with the
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train matrix of the size 457,548×194. Besides speeding up the learning process,
we avoided the GO terms that cannot generalize over a reasonable number of
locations.

Table 1 shows the results including the AUROC achieved by the two methods
as well as further information regarding the found biclusters. The table summa-
rizes 10 experimental runs, each for a different random train-test split. Note that
the traditional cross-validation scenario cannot be applied in the two-dimensional
setting.

AUROC evaluates the proposed methods from the point of view of their gen-
eralization ability. Importantly, both the proposed methods generalize far better
than random. In other words, the semantic descriptions of the biclusters can be
used to assume on the expression of unmeasured genes in unseen developmental
stages. The bicluster enrichment approach seems to be the most reliable predic-
tive method. If given an unseen pair of positive (present) and negative (absent)
expression entries, it correctly guesses the positive entry with approximately
75% chance. On the other hand, the method asks for a relatively large number
of bicluster annotation terms to reach a reasonable recall. In our experiments,
the average number of GO and location terms per bicluster was 44 and 4 re-
spectively (as the location ontology deals with a smaller number of terms). This
number of terms may make the interpretation hard for a human expert. JRip
outputs the most concise bicluster description, its disadvantages lie in the low
AUROC and by far the slowest runtime.

The experimental results conform to expectations. The bicluster enrichment
approach ignores the semantic description when building the biclusters. Conse-
quently, they tend to faithfully fit the expression matrix and compactly represent
the expression patterns that the matrix contains. On the other hand, their post-
poned semantic annotation may turn out complex and fuzzy. The rule and tree
learning does just the opposite. It directly searches for concise semantic descrip-
tions that separate positive and negative expression values in training data. As
a result, the descriptions have tendency to be short and crisp with potentially
lower recall.

Method AUROC # of biclusters Avg. # of terms per bicluster

Bicluster Enrichment 0.769±0.013 11.8±1.5 47.9±2.13
Rules (JRip) 0.636±0.01 93.7±17.4 7.0±0.40
Tree (J48) 0.713±0.01 1±0 27.5±0.89
Table 1. Evaluation results of the proposed approaches to semantic biclustering.

Figure 1 presents the individual ROC curves. For the bicluster enrichment
method, the curve is constructed as a convex hull for 16 binary classifiers reached
for different θG and θS settings. However, the curve suggests that one of the
classifiers (namely the one for θG = θS = 1) makes the major contribution to the
aggregate AUROC while the other classifiers approach the trivial convex hull or
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fall under it. J48 and JRip can provide both binary and probabilistic outcomes.
In here, we work with the probabilistic outcome, the curve is constructed with
different probability thresholds for assigning an example to the positive class.
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Fig. 1. Semantic biclustering ROC curves for Drosophila ovary gene expression data.

5 Conclusions and Future Work

We have motivated and defined the task of semantic biclustering and proposed
two approaches to solve the task, based on adaptations of current biclustering,
enrichment, and rule and tree learning methods. We compared them in exper-
iments with Drosophila ovary gene expression data. Our findings indicate that
the semantic biclustering method achieves the best performance in terms of the
area under the ROC curve, at the price of employing a large number of ontology
terms to describe the discovered bicluster.

In future work, we mainly want to investigate the statistical implications of
the non-standard way to split the data matrix into the (rectangular) training
set and the testing set. Furthermore, we plan to devise a specialized method
for semantic biclustering that would combine the advantages of the proposed
approaches. In principal, the biclustering enrichment ignores the prior knowledge
when searching for biclusters. None of the biclusters has to be interpretable as a
result. The rule and tree-based methods directly stem from the prior knowledge
and search for the most general conjunctive concepts that fit the training data
under the risk of their overfitting.
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26. Žitnik, M., Zupan, B.: Nimfa: A python library for nonnegative matrix factoriza-
tion. The Journal of Machine Learning Research 13(1), 849–853 (2012)


