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Abstract. Analysis of gene expression data in terms of a priori-defined
gene sets typically yields more compact and interpretable results than
those produced by traditional methods that rely on individual genes. The
set-level strategy can also be adopted in predictive classification tasks ac-
complished with machine learning algorithms. Here, sample features orig-
inally corresponding to genes are replaced by a much smaller number of
features, each corresponding to a gene set and aggregating expressions of
its members into a single real value. Classifiers learned from such trans-
formed features promise better interpretability in that they derive class
predictions from overall expressions of selected gene sets (e.g. correspond-
ing to pathways) rather than expressions of specific genes. In a large col-
lection of experiments we test how accurate such classifiers are compared
to traditional classifiers based on genes. Furthermore, we translate some
recently published gene set analysis techniques to the above proposed ma-
chine learning setting and assess their contributions to the classification
accuracies.
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1 Introduction

Set-level techniques have recently attracted significant attention in the area of
gene expression data analysis [20, 9, 13, 18, 14, 23]. Whereas in traditional analy-
sis approaches one typically seeks individual genes differentially expressed across
sample classes (e.g. cancerous vs. control), the set-level approach aims to iden-
tify entire sets of genes that are significant e.g. in the sense that they contain
an unexpectedly large number of differentially expressed genes. The gene sets
considered for significance testing are defined prior to analysis, using appropri-
ate biological background knowledge. The main advantage brought by set-level
analysis is the improved interpretability of analysis results. Indeed, the long lists
of differentially expressed genes characteristic of traditional expression analysis
are replaced by shorter and more informative lists of actual biological processes.

Predictive classification [11] is a form of data analysis going beyond the mere
identification of differentially expressed units. Here, units deemed significant for
the discrimination between sample classes are assembled into formal models pre-
scribing how to classify new samples whose class labels are not yet known. Predic-
tive classification techniques are thus especially relevant to diagnostic tasks and
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as such have been explored since very early studies on microarray data analysis
[10]. Predictive models are usually constructed by supervised machine learning
algorithms [11] that automatically discover patterns among samples whose la-
bels are already available (so-called training samples). Learned classifiers may
take diverse forms ranging from geometrically conceived models such as Support
Vector Machines [24], which have been especially popular in the gene expression
domain, to symbolic models such as logical rules or decision trees that have also
been applied in this area [27, 15].

The main motivation for extending the set-level framework to the machine
learning setting is again the interpretability of results. Informally, classifiers
learned using set-level features acquire forms such as “predict cancer if path-
way P1 is active and pathway P2 is not” (where activity refers to aggregated
expressions of the member genes). In contrast, classifiers learned in the standard
setting derive predictions from expressions of individual genes; it is usually dif-
ficult to find relationships among the genes involved in such a classifier and to
interpret the latter in terms of biological processes.

The described feature transformation incurs a significant compression of the
training data since the number of considered gene sets is typically much smaller
than the number of interrogated genes. This raises the natural question whether
relevant information is lost in the transformation, and whether the augmented
interpretability will be traded off for decreased predictive accuracy. The main
objective of this study is to address this question experimentally.

A further important objective is to evaluate—from the machine learning
perspective—statistical techniques proposed recently in the research on set-level
gene expression analysis. These are namely the Gene Set Enrichment Analysis
(GSEA) method [20], the SAM-GS algorithm [7] and a technique known as the
Global test [9]. Informally, they rank a given collection of gene sets according to
their correlation with phenotype classes. The methods naturally translate into
the machine learning context in that they facilitate feature selection [17], i.e. they
are used to determine which gene sets should be provided as sample features to
the learning algorithm. We experimentally verify whether these methods work
reasonably in the classification setting, i.e. whether learning algorithms produce
better classifiers from gene sets ranked high by the mentioned methods than
from those ranking lower. We investigate classification conducted with a single
selected gene set as well as with a batch of high ranking sets.

To use a machine learning algorithm, a unique value for each feature of each
training sample must be established. Set-level features correspond to multiple
expressions and these must therefore be aggregated. We comparatively evalu-
ate two aggregatation options. The first simply averages the expressions of the
involved genes, whereas the second relies on the more sophisticated method pro-
posed by [23] and based on singular value decomposition.

Let us return to the initial experimental question concerned with how the
final predictive accuracy is influenced by the training data compression incurred
by reformulating features to the gene set level. As follows from the above, two
factors contribute to this compression: selection (not every gene from the orig-
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inal sample representation is a member of a gene set used in the set-level rep-
resentation, i.e. some interrogated genes become ignored) and aggregation (for
every gene set in the set-level representation, expressions of all its members are
aggregated into a single value). We quantify the effects of these factors on predic-
tive accuracy. Regarding selection, we experiment with set-level representations
based on 10 best gene sets and 1 best gene set, respectively, and we do this for
all three of the above-mentioned selection methods. We compare the obtained
accuracies to the baseline case where all individual genes are provided as features
to the learning algorithm. For each of the selection cases, we want to evaluate
the contribution of the aggregation factor. This is done by comparing both of
the above mentioned aggregation mechanisms to the control case where no ag-
gregation is performed at all; in this case, individual genes combined from the
selected gene groups act as features.

The contribution of the present study lies in the thorough experimental eval-
uation of a number of aspects and techniques of the gene set framework employed
in the machine learning context. Our contribution is, however, also significant
beyond the machine learning scope. In the general area of set-level expression
analysis, it is undoubtedly important to establish a performance ranking of the
various statistical techniques for the identification of significant gene sets in class-
labeled expression data. This is made difficult by the lack of an unquestionable
ranking criterion—there is in general no ground truth stipulating which gene
sets should indeed be identified by the tested algorithms. The typical approach
embraced by comparative studies (such as [7]) is thus to appeal to intuition (e.g.
the p53 pathway should be identified in p53-gene mutation data). However legit-
imate such arguments are, evaluations based on them are obviously limited in
generality and objectivity. We propose that the predictive classification setting
supported by the cross-validation procedure for unbiased accuracy estimation,
as adopted in this paper, represents exactly such a needed framework enabling
objective comparative assessment of gene set selection techniques. In this frame-
work, results of gene set selection are deemed good if the selected gene sets allow
accurate classification of new samples. Through cross-validation, the accuracy
can be estimated in an unbiased manner.

The rest of the paper is organized as follows. The next section describes
the specific methods and data sets used in our experiments. In Section 3 we
expose the experimental results. Section 4 summarizes the main conclusions and
proposes directions for follow-up research.

2 Methods and Data

Here we first describe the methods adopted for gene set ranking, gene expression
aggregation, and for classifier learning. Next we present the data sets used as
benchmarks in the comparative experiments. Lastly, we describe the protocol
followed by our experiments.
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2.1 Gene Set Ranking

Three methods are considered for gene set selection. As inputs, all of the meth-
ods assume a set G = {g1, g2, . . . gn} of interrogated genes, and a set S of m

expression samples where for each si ∈ S, si = (e1,i, e2,i, . . . en,i) ∈ R
n where ej,i

denotes the (normalized) expression of gene gj in sample si. The sample set S is
partitioned into phenotype classes S = C1 ∪ C2 ∪ . . . ∪ Co so that Ci ∩ Cj = {}
for i 6= j. For simplicity in this paper we assume binary classification, i.e. o = 2.
A further input is a collection of gene sets G such that for each Γ ∈ G it holds
Γ ⊆ G. In the output, each of the methods ranks all gene sets in G by their
estimated power to discriminate samples into the predefined classes.

Next we give a brief account of the three methods and refer to the original
sources for a more detailed description. In experiments, we used the original
implementations of the procedures as provided by the respective authors.

GSEA [20]. Gene set enrichment analysis tests a null hypothesis that gene rank-
ings in a gene set Γ , according to an association measure with the phenotype, are
randomly distributed over the rankings of all genes. It first sorts G by correla-
tion with binary phenotype. Then it calculates an enrichment score (ES) for each
Γ ∈ G by walking down the sorted gene list, increasing a running-sum statistic
when encountering a gene gi ∈ Γ and decreasing it otherwise. The magnitude of
the change depends on the correlation of gi with the phenotype. The enrichment
score is the maximum deviation from zero encountered in the random walk. The
statistical significance of the ES is estimated by an empirical phenotype-based
permutation test procedure that preserves the correlation structure of the gene
expression data. GSEA was one of the first specialized gene-set analysis tech-
niques. It has been reported to attribute statistical significance to gene sets that
have no gene associated with the phenotype, and to have less power than other
recent test statistics [7, 9].

SAM-GS [7]. This method tests a null hypothesis that the mean vectors of the
expressions of genes in a gene set do not differ by phenotype. Each sample si

is viewed as a point in an n-dimensional Euclidean space. Each gene set Γ ∈ G
defines its |Γ |-dimensional subspace in which projections sΓ

i of samples si are
given by coordinates corresponding to genes in Γ . The method judges a given
Γ by how distinctly the clusters of points {sΓ

i |si ∈ C1} and {sΓ
j |sj ∈ C2} are

separated from each other in the subspace induced by Γ . SAM-GS measures the
Euclidean distance between the centroids of the respective clusters and applies
a permutation test to determine whether, and how significantly, this distance is
larger than one obtained if samples were assigned to classes randomly.

Global Test [9]. The global test, analogically to SAM-GS, projects the expression
samples into subspaces defined by gene sets Γ ∈ G. In contrast to the Euclidean
distance applied in SAM-GS, it proceeds instead by fitting a regression function
in the subspace, such that the function value acts as the class indicator. The
degree to which the two clusters are separated then corresponds to the magnitude
of the coefficients of the regression function.
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2.2 Expression Aggregation

Two methods are considered for assigning a value to a given gene set Γ for a
given sample si by aggregation of expressions of genes in Γ .

Averaging. The first method simply produces the arithmetic average of the ex-
pressions of all Γ genes in sample si. The value assigned to the pair (si, Γ ) is
thus independent of samples sj , i 6= j.

Singular Value Decomposition. A more sophisticated approach was employed
by [23]. Here, the value assigned to (si, Γ ) depends on other samples sj . In
particular, all samples in the sample set S are viewed as points in the |Γ |-
dimensional Euclidean space induced by Γ the same way as explained in Section
2.1. Subsequently, the specific vector in the space is identified, along which the
sample points exhibit maximum variance. Each point sk ∈ S is then projected
onto this vector. Finally, the value assigned to (si, Γ ) is the real-valued position
of the projection of si on the maximum-variance vector in the space induced by
Γ . We refer to the paper [23] for detailed explanation.

2.3 Machine Learning

We experimented with five diverse machine learning algorithms to avoid depen-
dence of experimental results on a specific choice of a learning method, namely
Support Vector Machine, 1-Nearest Neighbor, 3-Nearest Neighbors, Naive Bayes
and Decision Tree. These algorithms are explained in depth for example by [11].
In experiments, we used the implementations available in the WEKA software
due to [25], using the default settings. None of the methods below is in principle
superior to the others, although the first one prevails in predictive modeling of
gene expression data and is usually associated with high resistance to noise.

2.4 Expression and Gene Sets

We conducted our experiments using 20 public gene expression datasets, each
containing samples pertaining to two classes. Table 1 shows for each dataset
the number of samples in each class, the number of interrogated genes and the
reference for further details. Some of the two-class datasets were derived from
the three-class problems (Colitis and Crohn, Parkinson).

Besides expression datasets, we utilized a gene set database consisting of
1685 manually curated sets of genes obtained from the Molecular Signatures
Database (MSigDB v2.0) [20]. These gene sets have been compiled from various
online databases (e.g. KEGG, GenMAPP, BioCarta).

2.5 Experimental Protocol

Classifier learning in the set-level framework follows a simple workflow whose
performance is influenced by several factors, each corresponding to a particular
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Dataset Genes Class 1 Class 2 Reference

ALL/AML 10056 24 24 [1]
Brain/muscle 13380 41 20 [13]
Colitis and Crohn 1 14902 42 26 [4]
Colitis and Crohn 2 14902 42 59 [4]
Colitis and Crohn 3 14902 26 59 [4]
Diabetes 13380 17 17 [18]
Heme/stroma 13380 18 33 [13]
Gastric cancer 5664 8 22 [12]
Gender 15056 15 17 [20]
Gliomas 14902 26 59 [8]
Lung Cancer Boston 5217 31 31 [3]
Lung Cancer Michigan 5217 24 62 [2]
Melanoma 14902 18 45 [21]
p53 10101 33 17 [20]
Parkinson 1 14902 22 33 [19]
Parkinson 2 14902 22 50 [19]
Parkinson 3 14902 33 50 [19]
Pollution 37804 88 41 [16]
Sarcoma and hypoxia 14902 15 39 [26]
Smoking 5664 18 26 [5]

Table 1. Number of genes interrogated and number of samples in each of the two
classes of each dataset.

choice from a class of techniques (such as for gene set ranking). We evaluate the
contribution of these factors to the predictive accuracy of the resulting classifiers
through repeated executions of the learning workflow, varying the factors.

The learning workflow is shown in Fig. 1. Given a set of binary-labeled train-
ing samples from an expression dataset, the workflow starts by ranking the pro-
vided collection of a priori-defined gene sets according to their power to discim-
inate sample classes (see Sec. 2.1 for details). The resulting ranked list is subse-
quently used to select the gene sets used to form set-level sample features. Each
such feature is then assigned a value for each training sample by aggregating the
expressions in the gene set corresponding to the feature; an exception to this is
the none alternative of the aggregation factor, where expressions are not aggre-
gated, and features correspond to genes instead of gene sets. This alternative is
considered for comparative purposes. Next, a machine learning algorithm pro-
duces a classifier from the reformulated training samples. Finally, the classifier’s
predictive accuracy is calculated as the proportion of samples correctly classifed
on an independent testing sample fold. For compatibility with the learned clas-
sifier, the testing samples are also reformulated to the set level prior to testing,
using the selected gene sets and aggregation as in the training phase.

Six factors along the workflow influence its result. The alternatives considered
for each of them are summarized in Table 2. We want to assess the contributions
of the first three factors (top in table). The remaining three auxiliary factors
(bottom in table) are employed to diversify the experimental material and thus
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Trainining fold

7. Testing fold

 2. Rank gene sets

 3. Select gene sets

 4. Aggregate

 5. Learn classifier

 Test classifier

 1. Prior gene sets

6. Data set

(Data Set \ Testing Fold)

Fig. 1. The workflow of a set-level learning experiment conducted multiple times with
varying alternatives in the numbered steps. For compatibility with the learned classifier,
testing fold samples are also reformulated to the set level. This is done using gene sets
selected in Step 3 and aggregation algorithm used in Step 4. The diagram abstracts
from this operation.

increase the robustness of the findings. Factor 6 (testing fold) is involved auto-
matically through the adoption of the 10-fold cross-validation procedure (see e.g.
[11], chap. 7). We execute the workflow for each possible combination of factor
alternatives, obtaining a factored sample of 198,000 predictive accuracy values.

While the measurements provided by the above protocol allow us to compare
multiple variants of the set-level framework for predictive classification, we also
want to compare these to the baseline gene-level alternative usually adopted in
predictive classification of gene expression data. Here, each gene interrogated by
a microarray represents a feature. This sample representation is passed directly
to the learning algorithm without involving any of the pre-processing factors (1-3
in Table 2). The baseline results are also collected using the 5 different learning
algorithms, the 20 benchmark datasets and the 10-fold crossvalidation procedure
(i.e. factors 4-6 in Table 2 are employed). As a result, an additional sample of
1,000 predictive accuracy values are collected for the baseline variant.

Finally, to comply with the standard application of the cross-validation pro-
cedure, we averaged the accuracy values corresponding to the 10 cross-validation
folds for each combination of the remaining factors. The subsequent statistical
analysis thus deals with a sample of 19,800 and 100 measurements for the set-
level and baseline experiments, described by the predictive accuracy value and
the values of the relevant factors.

3 Results

All statistical tests in this section refer to the paired non-parametric Wilcoxon
test (two-sided unless stated otherwise).3 For pairing, we always related two

3 Preliminary normality tests did not justify the application of the stronger t-test.
Besides, the Wilcoxon test is argued [6] to be statistically safer than the t-test for
comparing classification algorithms over multiple data sets.



8 Lecture Notes in Computer Science: Gene Set Based Classification

Analyzed factors Alternatives #Alts

1. Ranking algo (Sec. 2.1) {gsea, sam-gs, global} 3
2. Sets forming features∗ {1, 2, . . . 10,

1676, 1677, . . . 1685,

1:10, 1676:1685} 22
3. Aggregation (Sec. 2.2) {svd, avg, none} 3

Product 198

Auxiliary factors Alternatives #Alts

4. Learning algo (Sec. 2.3) {svm, 1-nn, 3-nn, nb, dt} 5
5. Data set (Sec. 2.4) {d1 . . . d20} 20
6. Testing Fold {f1 . . . f10} 10

Product 1000

∗ identified by rank. 1685 corresponds to the lowest ranking set. i:j denotes that all
of gene sets ranking i to j are used to form features.

Table 2. Alternatives considered for factors influencing the set-level learning workflow.
The number left of each factor refers to the workflow step (Fig. 1) in which it acts.

measurements equal in terms of all factors except for the one investigated. All
significance results are at the 0.05 level.

Using the set-level experimental sample, we first verified whether gene sets
ranked high by the established set-level analysis methods (GSEA, SAM-GS and
Global test) indeed lead to construction of better classifiers by machine learning
algorithms, i.e. we investigated how classification accuracies depend on Factor
3 (see Table 2). In the top panel of Fig. 2, we plot the average accuracies for
Factor 3 alternatives ranging 1 to 10, and 1676 to 1685. The trend line fitted
by the least squares method shows a clear decay of accuracy as lower-ranking
sets are used for learning. The bottom panel corresponds to Factor 3 values
1:10 (left) and 1676:1685 (right) corresponding to the situations where the 10
highest-ranking and the 10 lowest-ranking (respectively) gene sets are combined
to produce a feature set for learning. Again, the dominance of the former in
terms of accuracy is obvious.

Given the above, there is no apparent reason why low-ranking gene sets
should be used in experiments. Therefore, to maintain relevance of the subse-
quent conclusions, we conducted further analyses only with measurements where
Factor 2 (gene set rank) is either 1 or 1:10.

Firstly, we assessed the difference between the remaining alternatives 1 and
1:10 corresponding to more and less (respectively) compression of training data.
Not surprisingly, the 1:10 variant, where sample features capture information
from the ten best gene sets exhibits significantly (p = 0.0007) higher accuracies
than the 1 variant using only the single best gene set to consitute features (a
single feature if aggregation is employed).

We further compared the three gene-set ranking methods by splitting the
set-level sample according to Factor 1. Since three comparisons are conducted
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Fig. 2. Average predictive accuracy tends to fall as lower-ranking gene sets are used
to constitute features (see text for details). Each point in the left panels and each box
plot in the right panel follows from 16,000 learning experiments. The trend lines shown
in the left panels are the ones minimizing the residual least squares.

in this case (one per pair), we used the Bonferroni-Dunn adjustment on the
Wilcoxon test result. The Global test turned out to exhibit significantly higher
accuracies than either SAM-GS (p = 0.013) or GSEA (p = 0.027). The difference
between the latter two methods was not significant.

Concerning Factor 3 (aggregation method), there are two questions of in-
terest: whether one aggregation method (svd, avg) outperforms the other, and
whether aggregation in general has a detrimental effect on performance. As for
the first question, no significant difference between the two methods was de-
tected. The answer to the second question turned out to depend on Factor 3
as follows. In the more compressive (1) alternative, the answer is affirmative
in that both aggregation methods result in less accurate classifiers than those
not incurring aggregation (p = 0.015 for svd, p = 0.00052 for avg, both after
Bonferroni-Dunn adjustment). However, the detrimental effect of aggregation
vanishes in the less compressive (1:10) alternative of Factor 2, where none of the
two comparisons yield a significant difference.

The principle trends can also be well observed through the ranked list of
methodological combinations by median classification accuracy, again generated
from measurements not involving random or low-ranking gene sets. This is shown
in Table 3. Position 8 refers to the baseline method where sample features capture
expressions of all genes and prior gene set definitions are ignored (see Section 2.5
for details). In agreement with the statistical conclusions above, the ranked table
clearly indicates the superiority of the Global test for gene-set ranking, and of
using the 10 best gene sets (i.e., the 1:10 alternative) to establish features rather
than relying only on the single best gene set. It is noteworthy that all three
methods involving the combinations of the Global test and the 1:10 alternative
(i.e., ranks 1, 2, 4) outperform the baseline method. This is especially remark-
able given that the two best of them (and two best overall) involve aggregation,
and the learning algorithm here receives training samples described by only 10
real-valued features. Thus, the gene-set framework allows for feature extraction
characterized by vast compression of data (from the original thousands of fea-
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Rank Methods Accuracy
Sets Rank. algo Aggrgt Median Avg σ Iqr

1 1:10 global svd 86.5 79.8 17.3 32.0
2 1:10 global avg 86.0 79.4 17.8 30.5
3 1:10 sam-gs none 83.8 78.3 18.5 35.1
4 1:10 global none 83.7 77.7 18.5 34.7
5 1:10 gsea none 82.8 77.7 18.8 34.8
6 1 global none 80.5 78.1 16.1 29.7
7 1:10 gsea avg 79.7 76.3 17.1 28.0
8 all genes used 79.3 77.2 18.9 35.3
9 1 gsea none 77.5 75.0 18.3 33.3
10 1 global svd 77.5 74.8 15.0 25.6
11 1:10 gsea svd 77.1 75.5 16.9 28.2
12 1:10 sam-gs avg 74.2 75.1 16.8 28.5
13 1 sam-gs none 73.9 74.1 15.1 26.3
14 1:10 sam-gs svd 73.8 74.6 17.6 28.9
15 1 global avg 72.8 72.2 14.0 22.2
16 1 gsea avg 68.3 69.6 13.0 16.3
17 1 gsea svd 67.4 68.5 13.2 14.4
18 1 sam-gs avg 65.4 64.7 10.3 15.9
19 1 sam-gs svd 64.2 65.0 12.7 13.0

Table 3. Ranking of combinations of gene set methods by median predictive accuracy
achieved on 20 datasets (Table 1, Section 2.4) with 5 machine learning algorithms (Sec-
tion 2.3) estimated through 10-fold cross-validation (i.e. 1,000 experiments per row).
The columns indicate, respectively, the resulting rank by median accuracy, the gene
sets used to form features (1 – the highest ranking set, 1:10 – the ten highest ranking
sets), the gene set selection method, the expression aggregation method (see Section
2 for details on the latter 3 factors), and the median, average, standard deviation and
interquartile range of the accuracy.

tures corresponding to expressions of individual genes, to 10 features) and, at
the same time, by a boost in classification accuracy.

4 Conclusions and Future Work

The set-level framework can be adopted in the machine learning setting without
trading off classification accuracy. To identify the best a priori-defined gene sets
for classification, the Global test [9] significantly outperforms the GSEA [20] and
SAM-GS [7] methods. To aggregate expressions of genes contained in a gene set
into a value assigned to that set acting as a feature, arithmetic average could
not be differentiated from the method [23] based on singular value decomposi-
tion. Using only 10 features corresponding to genuine gene sets selected by the
Global test, the learned set-level classifiers systematically outperform conven-
tional gene-level classifiers learned with access to all measured gene expressions.
Data compression and increased classification accuracy thus come as additional
benefits to increased interpretability of set-level classifiers.
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The above-mentioned effect of data shrinkage accompanied by increased pre-
dictive accuracy could, in principle, also be achieved by generic feature extrac-
tion methods (see e.g. [17]). The advantage of our approach is that our extracted
features maintain direct interpretability since they correspond to gene sets that
possess a biological meaning. In future work, it would be interesting to determine
whether the generic feature extraction methods could outperform the present
approach at least in terms of predictive accuracy achieved with a fixed target
number of extracted features. By the same mail, the optimal number of set-level
features employed will vary between data domains. For our experiments, we
chose the ad hoc number of 10 features for all domains. In future experiments,
the optimal domain-specific number may be estimated, e.g. through internal
cross-validation [11].

We applied two previously suggested general methods enabling aggregation of
multiple expression values into a single value assigned to a set-level feature. The
downside of this generality is that substantial information available for specific
kinds of gene sets is ignored. Of relevance to pathway-based gene sets, the recent
study by [22] convincingly argues that the perturbation of a pathway depends on
the expressions of its member genes in a non-uniform manner. It also proposes
how to quantify the impact of each member gene on the perturbation, given
the graphical structure of the pathway. It seems reasonable that a pathway-
specific aggregation method should also weigh member genes by their estimated
impact on the pathway. Such a method would likely result in more informative
pathway-level features and could outperform the two aggregagation methods we
have considered, potentially giving a futher boost to the good performance of
predictive classification based on a small number of set-level features.
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