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Abstract. We demonstrate a set-level approach to the integration of mul-
tiple platform gene expression data for predictive classification and show
its utility for boosting classification performance when single-platform sam-
ples are rare. We explore three ways of defining gene sets, including a novel
way based on the notion of a fully coupled flux related to metabolic path-
ways. In two tissue classification tasks, we empirically show that the gene
set based approach is useful for combining heterogeneous expression data,
while surprisingly, in experiments constrained to a single platform, biologi-
cally meaningful gene sets acting as sample features are often outperformed
by random gene sets with no biological relevance.

1 Introduction

The problem addressed in this paper is set-level analysis of gene expression data,
as opposed to the more traditional gene-level analysis approaches. In the latter,
one typically seeks single statistically significant genes or constructs classification
models with gene expressions acting as sample features. In set-level analysis, genes
are first grouped into sets apriori determined by a chosen relevant kind of back-
ground knowledge. For example, a gene set may correspond to a group of proteins
acting as enzymes in a biochemical pathway or be a set of genes sharing a gene-
ontology [3] term. Naturally, gene sets considered for an analysis may on one hand
overlap while on the other hand their union may not exhaust the entire gene set
screened in the expression data. Any gene set may then be assigned descriptive
values (such as expression, fold change, significance) by statistical aggregation of
the analogical values pertaining to its members. Gene sets thus may act as derived
sample features replacing the original gene expressions.

The potential for set-level analysis of genomic data has been advocated recently
[12, 1] on the grounds of improved interpretation power and statistical significance
of analysis results. The basic idea of set-level analysis is not new. Indeed, state-
of-the-art tools such as DAVID [9] have supported the established protocol of
enrichment analysis detecting ontology terms or pathways related to a large subset
of a user-supplied gene list, thus obviously following a simple form of set-level
analysis. The biological utility of set-level analysis was demonstrated by the study
[11] where a significantly downregulated pathway-based gene set in a class of type
2 diabetes was discovered despite no significant expression change being detected
for an individual gene. In another study [18], a method based on singular value



decomposition was proposed to determine the ‘level of activity’ of a pathway based
on the sampled expression values of its gene-members. The paper [5] reviews some
common statistical pitfalls in the calculation of such statistics ascribed to gene
sets. The recent work [15] suggests a more sophisticated method to estimate the
activity level of a pathway, considering the pathway structure in addition to the
expressions of the genes involved therein. Another innovative aspect of [15] is that
the authors employ such pathway activities as derived features of samples and use
these for sample classification by a machine learning algorithm.

The main contribution of the present work is showing that the gene set based
approach naturally enables to analyze in an integrated manner gene expression
data collected from heterogeneous platforms, which may even encompass differ-
ent organism species. The significance of this contribution is at least twofold.
First, microarray experiments are costly, often resulting in numbers of samples
insufficient for reliable modeling. The possibility of systematically integrating the
experimenter’s data with numerous public expression samples coming from het-
erogeneous platforms, would obviously help the experimenter. Second, such inte-
grated analysis provides the principal means to discover biological markers shared
by different-genome species.

We consider three types of gene sets. The first type groups genes that share
a common gene ontology [3] term. The second type groups genes acting in bio-
logical pathways formalized by the KEGG [10] database. The third gene set type
represents a further novel contribution of our work and is based on the notion of a
fully coupled flux, which is a pattern prescribing pathway partitions hypothesized
by [13] to involve strongly co-expressed genes. These synergize in single gradually
amplified biological functions such as enzymatic catalysis or translocation among
different cellular compartments.

Research papers concerned with gene set based analysis, including the afore-
mentioned studies, usually point out the statistical advantages of results based on
gene sets in comparison with those based on single genes. We conjecture, however,
that to assess the utility of the gene set approach, the relevant question that must
be asked is how data models based on biologically meaningful gene sets compare
to those based on gene sets constructed randomly, with no biological relevance.
This question is important as we indeed show that even random grouping of genes
into sets may lead to improved predictive accuracies. By addressing this question
way we can determine whether the inclusion of background knowledge through
gene sets has a positive effect on the analysis results. We are not aware of previ-
ous work considering this question1 and it is our third contribution to address it
experimentally.

The paper is organized as follows. In Section 2 we describe the methodological
ingredients of our approach, consisting of normalization, gene set extraction, data
integration and predictive classification. Section 3 describes the expression analysis
case studies and the collected relevant data used for experimental validation. In
Section 4 we show and discuss the experimental results. Section 5 lays out prospects
for future work and concludes the paper.

1 The suggested gene set randomization should not be confused with the standard class-
permutation technique used for validation, also in the set-level analysis context [1].



2 Methods

The input of our workflow is a set of gene expression samples (real vectors) possibly
measured by different microarray platforms. Each sample is assigned two labels.
The first identifies the microarray platform from which the sample originates, the
second identifies a sample class (e.g. tissue type). The output is a classification
model, that is, a model that estimates the sample class given an expression sam-
ple and its platform label. The model is obviously applicable to any sample not
present in the input (‘training’) data, as long as its platform label is also present
in the input data. The remarkable property of the output model is that it is not a
combination of separate models each pertaining to a single platform. Rather, it is
a single classifier trained from the entire heterogeneous sample set and represented
in terms of ‘activity levels’ of units that apply to all platforms, albeit the compu-
tation of these activity levels may be different across platforms. More specifically,
the activity of a unit (such as a pathway) is calculated using a different gene set in
each platform. We now describe the individual steps of the method in more detail.

Normalization. The first normalization step is conducted separately for each
platform to consolidate same-platform samples. Quantile normalization [2] ensures
that the distribution of expression values across such samples is identical. As a
second step, scaling provides means to consolidate the measurements across multi-
platform samples. We subtract the sample mean from all sample components, and
divide them by the standard deviation within the sample. As a result, all samples
independently of the platform exhibit zero mean and unit variance. We conduct
these steps using the Bioconductor [4] software.

Set Construction. Here we consider three types of background knowledge in
order to define apriori gene sets. Each such set will be extracted from the initial
pool of all genes measured by at least one of the involved platforms.

The first type groups genes that share a common gene ontology [3] term. The
second type groups genes acting in biological pathways formalized by the KEGG
[10] database. A gene falls in a set corresponding to a pathway if it is mapped to a
KEGG node of some organism ortholog of that pathway. The third gene set type
is based on the notion of a fully coupled flux (FCF), motivated as follows. Many
notable biological conditions are characterized by the activation of only certain
parts of pathways; for example, see references [16, 19, 21]. The notion of ‘pathway
activation’ implied by the previous gene set may thus often violate intuition and
hinder interpretation. Therefore we extracted all pathway partitions which comply
with the graph-theoretic notion of FCF [13]. It is known that the genes coupled by
their enzymatic fluxes not only show similar expression patterns, but also share
transcriptional regulators and frequently reside in the same operon in prokary-
otes or similar eukaryotic multi-gene units such as the hematopoietic globin gene
cluster. FCF is a special kind of network flux that corresponds to a pathway par-
tition in which non-zero flux for one reaction implies a non-zero flux for the other
reactions and vice versa. It is the strongest qualitative connectivity that can be
identified in a network. The notion of an FCF is explained through an example
in Fig. 1; for a detailed definition, see reference [13]. Pathway partitions forming
FCF’s constitute the third gene set type. Again, a gene falls in a set corresponding
to a FCF if it is mapped to a KEGG node in some organism-ortholog of that FCF.



Fig. 1. Fully coupled fluxes in a simplified network with nodes representing chemical
compounds and arrows as symbols for chemical reactions among them. Each arrow can
be labeled by a protein. R3, R4 and R5 are fully coupled as a flux in any of these reactions
implies a flux in the rest of them. Note that R1 and R3 do not constitute a FCF as a
flux in R3 does not imply a flux in R1.

The extraction of fully coupled fluxes from KEGG pathways graphs was con-
ducted in Prolog. The source code as well as the Prolog representation [8] of the
pathways are available on request to the first author. The bold numbers in Table
2 display the total numbers of gene sets extracted for the respective types.

In what follows, gene sets act as features acquiring a real value for each sample.
Formally, let π be the set of genes interrogated by a given platform, and Σ a set
of gene sets of a particular type. We define a mapping

Aπ : R|π| ×Σ → R

For an expression sample s = [e1, . . . , e|π|] ∈ R|π|, Aπ(s, σ) should collectively
quantify the ‘activity level’ of genes in set σ ∈ Σ, in the biological situation (e.g.
a tissue type) sampled by s. Typically, not all members of σ will be measured
by platform π, and the computation of Aπ(s, σ) will be based on the expressions
ei of genes in σ ∩ π. For transparency, in this study we define Aπ(s, σ) as the
average of expressions measured in s for all genes in σ∩π. We only note here that
more sophisticated methods have been proposed to instantiate Aπ(s, σ), either
linear, based e.g. on a weighted sum of expression values of the involved genes as
in [18], or non-linear, based on additional structure information as in [15] but then
constrained to pathway-type gene sets.

Our reasoning above assumes the aggregation of gene expression measurements.
Precisely speaking, genes themselves aggregate one or more measurements since
multiple probesets can represent the same gene. Here, the expression of a gene is
simply defined as the average of the corresponding normalized probeset measure-
ments, despite certain caveats of this approach.2

Data Integration. The goal of this methodological step is to integrate hetero-
geneous expression samples into a single-tabular representation (that is, into a set
of samples sharing a common feature set) that predictive classification algorithms
2 For example, Affymetrix chips contain probesets representing the same gene that can-

not be consolidated into unique measures of transcription due to alternative splicing,
use of alternative poly(A) signals, or incorrect annotations [17].



Fig. 2. Integrating expression data collected from heterogeneous platforms into a unified
tabular representation of pathway activations. If these platforms pertain to different or-
ganisms, we assume that (an ortholog of) each pathway pi exists in each of the organisms.

can process. Formally, we have a set of expression samples S = {s1, s2, . . .} in
which for all i

si ∈ ∪jR
|πj |, πj ∈ Π

where Π is the set of the considered platforms. We wish to obtain a new represen-
tation S̄ = {s̄1, s̄2, . . .} where each s̄i ∈ Rn, n ∈ N .

This aim is achieved using the above introduced ‘gene set activation’ concepts.
Formally, using gene set type Σ = {σ1, σ2, . . . , σm}, for each sample si labeled
with platform π we stipulate

s̄i = [Aπ(si, σ1), . . . , Aπ(si, σm)]

Naturally, sample s̄i then inherits the class label from si. The integration principle
is exemplified in Fig. 2 with pathways pi playing the role of gene sets σi. The de-
scribed representation conversion is part of the functionality of the aforementioned
Prolog code.

Classification and Validation. The final step of the workflow is to em-
ploy machine learning algorithms to induce predictive classification models of the
integrated samples. As the achieved unified representation S̄ can be processed
by virtually any machine learning algorithm, the choice appears rather arbitrary.
Since one of the usual arguments in favor of gene set based analysis is the ease
of interpretation, we decided to test decision-tree classifiers enabling direct hu-
man inspection. Specifically, we experimented with the J48 decision tree learner
included the machine learning environment Weka [20].

The design of the experiments and the validation protocol is dictated by the
following questions we wish to address empirically.

– (Q1) How do classifiers based on original single gene expressions compare
in terms of predictive accuracy to those based on activations of biologically
meaningful gene sets?

– (Q2) How do classifiers based on biologically meaningful gene sets compare in
terms of predictive accuracy to those based on gene sets constructed randomly,
with no biological relevance?

– (Q3) How do classifiers learned from single-platform data compare in terms of
predictive accuracy to those learned from data integrated from heterogeneous
platforms?



In the case of (Q2), we constructed three families of random gene sets correspond-
ing to the three respective kinds of genuine gene sets, for each of the involved
platforms. The correspondence is in that a particular type of random gene sets con-
tains exactly the same number of set-elements and exactly the same set-cardinality
distribution as its genuine counterpart. For each platform, the members of each
random gene set were drawn randomly without replacement from a uniform prob-
ability distribution cast on the genes measured by the platform.

We are interested in the insights Q1-Q3 for both the ‘data-rich’ and ‘data-
poor’ situation, i.e. for both small and large sets of expression samples. Therefore
the preferred means of assessment is through learning curves which are diagrams
plotting an unbiased estimate of the classifier’s predictive accuracy against the
proportion p of the available data set used for its training. The accuracy estimate
for each measured p was obtained by inducing a classifier 20 times with a randomly
chosen subset (of proportional size p) of the entire data set and testing its accuracy
on the remaining data not used for training. In each such step, the 20 empirical
accuracy results were averaged into the reported value. We let p range from 0.2 to
0.8 to prevent statistical artifacts arising from overly small sets used for training
or testing, respectively.

3 Classification Tasks and Data

Here we validate our methodology in biological classification tasks. In order to
avoid domain bias, we chose not to tackle overly special classification cases such
as those addressing particular diseases. We therefore address two general tasks
of tissue type classification. The first experiment focuses on distinct features of
blood-forming (hematopoietic; ‘heme’ in figure legends) and supportive (stromal;
‘stroma’) cellular compartments in the bone marrow. The second assesses differ-
ences in brain, liver and muscle tissues. Both experiments are of biological sig-
nificance as they tackle novel challenges in understanding of cellular behavior:
the former in the complex functional unit termed hematopoietic stem cell niche,
where inter-dependent hematopoietic and stromal cell functions synergize in the
blood-forming function of the bone marrow; the latter in comparison of cell fate
determined by the tissue origin from the separate layers of the embryo: ectoderm
(brain), endoderm (liver) and mesoderm (muscle). While of general character,
the chosen classification tasks are not just random biological exercises as these
studies may illuminate cellular functions determined by gene expression signa-
tures in complex cell system seeded by cell-type-heterogeneous undifferentiated
populations (hematopoietic and stromal stem cells in the cell niche), and in the
cell-type-homogeneous differentiated tissues (brain, liver and muscle), respectively.

For both the first (2-class) and the second (3-class) classification problems,
samples were downloaded from the Gene Expression Omnibus database [14]. We
only downloaded control (non-treated, non-pathological) samples of each tissue
in question. For ease of gene functional annotation, we only downloaded samples
measured with platforms provided by Affymetrix. Table 1 provides the statistics
on sample distribution among classes and platforms. Table 2 then shows statistics
derived from the application of apriori constructed gene sets onto the collected
expression samples.



Platform 1261 339 341 570 81 91 96 97
Organism mmu mmu rno hsa mmu hsa hsa hsa

Heme 46 7 4 19 6 18 18
Stroma 19 8 47 26 33

Platform 1261 91 96
Organism mmu hsa hsa

Brain 6 15 20
Liver 11 2 6
Muscle 11 22 41

Table 1. Sample size statistics. Platforms are identified by NCBI’s GPL keys. Organism
keys stand for mus musculus (mmu), homo sapiens (hsa) and rattus norvegicus (rno)

.

Set type Total Probesets contained
Min Max Avg Median

FCF 901 0 83 5.47 2
Pathway 251 0 457 52.09 33
GO term 5164 1 7605 25.75 3
Gene 12808∗ 1 49 1.58 1
∗average across platforms

Table 2. Gene sets statistics. Numbers in bold are independent of the specific platforms
measuring the expression data, being only determined by the respective types of back-
ground knowledge. The ‘Probesets contained’ columns capture statistics over all involved
platforms. The first three rows correspond to the apriori defined sets. For accuracy, we
list their sizes in terms of probesets, rather than genes. The statistical relation between
genes and probes are in turn shown in the last row.

4 Results

Here we show the empirical results obtained by processing the data described in
Section 3 by the method explained in Section 2 and comment on their relevance
to questions Q1-Q3 formulated in the latter section. Results are of two types:
single-platform (experiments conducted on a single type of microarray) and cross-
platform (experiments on the integrated heterogeneous expression data). Single-
platform experiments are shown in both classification tasks for the sample-richest
platform pertaining to the homo sapiens organism (GPL97 and GPL96 respec-
tively).

The principal trends observed are as follows. Q1 is addressed by the top two
panels of Fig. 3. While they do not provide a conclusive performance ranking of the
four types of sample representation, they clearly demonstrate that predictive accu-
racy is not sacrificed by converting the representation from genes to gene sets. On
the contrary, the gene set representation based on GO terms quite systematically
outperforms the original gene based representation. The lower two panels of Fig.
3 compare the three gene set based approaches in the cross-platform experiments
where the gene based representation is not applicable. In the Heme-Stroma task, a
clear ranking is observable with fully coupled fluxes performing best, followed by
GO terms and lastly pathways. Ranking induced by the Brain-Liver-Muscle task
is much less crisp.



Figures 4 and 5 relate to Q2. Fig. 4 provides the surprising finding that none
of the three genuine gene set representations strictly outperforms its random-
ized counterpart in both tasks performed in the single-platform setting; with the
pathway based gene set representation being strikingly outperformed in the Brain-
Liver-Muscle task. To make sure that these results were not a statistical artifact we
regenerated all the randomized gene sets and arrived at principally same results.
Combining these results with the top row of Fig 3, we deduce another observation
that the random gene set approach often improves classification accuracy upon the
basic classification based on gene expressions. This latter observation can however
be explained rather naturally by viewing the random gene set approach as a form
of stochastic feature extraction [7] reducing the dimensionality of the data and
thus suppressing the variance component [6] of the classification error. The trends
are significantly different in the cross-platform setting (Fig. 5) where all genuine
gene set types strictly outperform their random counterparts in both tasks. Here
the value of biologically meaningful gene sets manifests itself clearly in that the
sets act as links connecting diverse genes distributed across platforms. Such a link
is obviously broken when the gene sets are randomized.

Finally, to answer Q3 we compare the upper panels of Fig. 3 against its lower
panels. With large training data sizes, accuracy differences between single-platform
(upper panels) and cross-platform (lower panels) learning are insignificant, letting
us conclude that the assembling of multiple-platform data did not have a detri-
mental effect on classification performance. More importantly still, in the cross-
platform setting, high accuracies are achieved much earlier along the x axis than in
the single-platform setting. While the reason is obvious (the same sample set pro-
portion corresponds to a higher absolute number of samples in the cross-platform
case), this observation is reassuring. An experimenter possessing a sample set too
small for reliable model induction may benefit from employing the gene set based
approach to include further relevant public expression samples, however coming
from diverse microarray platforms.

5 Conclusions and Future Work

We have demonstrated a set-level approach to the integration of multiple-platform
gene expression data for predictive classification and argued its utility for boost-
ing classification performance when single-platform samples are rare. We explored
three ways of defining gene sets, including a novel way based on the notion of a
fully coupled flux related to metabolic pathways. In two tissue classification tasks,
we showed that the gene set based representation is unquestionably useful for
combining heterogeneous expression data. This may be for sakes of assembling a
larger sample set or to obtain general biological insights not limited to a particu-
lar organism. On the other hand, in experiments constrained to a single platform,
biologically meaningful gene sets were often outperformed by random gene sets
with no biological relevance. Further studies are obviously needed to conclusively
compare the performance of biologically relevant gene sets with their randomized
counterparts; such studies would especially be interesting in problems where the
genuine gene set approach was shown successful, such as in [18, 11]. Another natu-
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Fig. 3. Overall comparison of predictive classification performance using genes (only
single-platform) and genuine gene sets. Top: single-platform, Bottom: cross-platform

ral extension of this work would be in the adoption of a less elementary approach
to determine the pathway activation levels, e.g. along the lines of the study [15].
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