
Efficient Mining Under Rich Constraints
Derived from Various Datasets

Arnaud Soulet1, Jǐŕı Kléma1,2, and Bruno Crémilleux1

1 GREYC, Université de Caen
Campus Côte de Nacre

F-14032 Caen Cédex France
{Forename.Surname}@info.unicaen.fr

2 Department of Cybernetics
Czech Technical University, Prague

klema@labe.felk.cvut.cz

Abstract. Mining patterns under many kinds of constraints is a key
point to successfully get new knowledge. In this paper, we propose an
efficient new algorithm Music-dfs which soundly and completely mines
patterns with various constraints from large data and takes into account
external data represented by several heterogeneous datasets. Constraints
are freely built of a large set of primitives and enable to link the informa-
tion scattered in various knowledge sources. Efficiency is achieved thanks
to a new closure operator providing an interval pruning strategy applied
during the depth-first search of a pattern space. A transcriptomic case
study shows the effectiveness and scalability of our approach. It also
demonstrates a way to employ background knowledge, such as free texts
or gene ontologies, in the discovery of meaningful patterns.

Keywords: constraint-based mining, transcriptomic data.

1 Introduction

In current scientific, industrial or business data mining applications, the critical
need is not to generate data, but to derive knowledge from huge and heteroge-
neous datasets produced at high throughput. In order to explore and discover
new highly valuable knowledge it is necessary to develop environments and tools
able to put all this data together. This involves different challenges, like design-
ing efficient tools to tackle a large amount of data and the discovery of patterns
of a potential user’s interest through several datasets. There are various ways
to interconnect the heterogeneous data sources and to express the mutual rela-
tions among the entities they address. Constraints provide a focus on the most
promising knowledge by reducing the number of extracted patterns to those of
a potential interest given by the user. Furthermore, when constraints can be
pushed deep inside the mining algorithm, performance is improved, making the
mining task computationally feasible and resulting in a human-workable output.

This paper addresses the issue of efficient pattern mining from large binary
data under flexible constraints derived from additional heterogeneous datasets

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 223–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 A. Soulet et al.

synthetizing background knowledge (BK). Large datasets are characterized
mainly by a large number of columns (i.e., items). This characteristic often en-
countered in a lot of domains (e.g., bioinformatics, text mining) represents a
remarkable challenge. Usual algorithms show difficulties in running on this kind
of data due to the exponential search space growth with the number of items.
Known level-wise algorithms commonly fail in mining frequent or constrained
patterns in such data [17]. On top of that, the user often would like to inte-
grate BK in the mining process in order to focus on the most plausible patterns
consistent with pieces of existing knowledge. BK is available in relational and
literature databases, ontological trees and other sources. Nevertheless, mining
in a heterogeneous environment allowing a large set of descriptions at various
levels of detail is highly non-trivial. This paper solves the problem by pushing
user-defined constraints that may stem both from the mined binary data and
the BK summarized in similarity matrices or textual files.

The contribution of this paper is twofold. First we provide a new algorithm
Music-dfs which soundly and completely mines constrained patterns from large
data while taking into account external data (i.e., several heterogeneous datasets).
Except for specific constraints for which tricks like the transposition of data [14, 9]
or the use of the extension [8] can be used, levelwise approaches cannot tackle large
data due to the huge number of candidates. On the contrary, Music-dfs is based
on a depth first search strategy. The key idea is to use a new closure operator en-
abling an efficient interval pruning for various constraints (see Section 3). In [5], the
authors also benefit from intervals to prune the search space, but their approach is
restricted to the conjunction of one monotone constraint and one anti-monotone
constraint.The output ofMusic-dfs is an interval condensed representation: each
pattern satisfying the given constraint appears once in the collection of intervals
only. Second, we provide a generic framework to mine patterns with a large set of
constraints based on several heterogeneous datasets like texts or similarity matri-
ces. It is a way to take into account the BK. Section 4 depicts a transcriptomic
case study. The biological demands require to mine the expression data with con-
straints concerning complex relations represented by free texts and gene ontolo-
gies. The discovered patterns are likely to encompass interesting and interpretable
knowledge.

This paper differs from our work in [20] for a double reason. First, the frame-
work is extended to external data. Second, Music-dfs is deeply different from
the prototype used in [20]: Music-dfs integrates primitives to tackle external
data and thanks to its strategy to prune the search space (new interval pruning
based on prefix-free patterns, see Section 3), it is able to mine large data. Sec-
tion 4 demonstrates the practical effectiveness of Music-dfs in a transcriptomic
case study and shows that other prototypes (including the prototype presented
in [20]) fail. To the best of our knowledge, there is no other constraint-based tool
to efficiently discover patterns from large data under a broad set of constraints
linking the information distributed in various knowledge sources.

This paper is organized as follows. Section 2 introduces our framework to mine
patterns satisfying constraints defined over several kinds of datasets. In Section 3,

Efficient Mining Under Rich Constraints Derived from Various Datasets 225

we present the theoretical essentials that underlie the efficiency of Music-dfs

and we provide its main features. Experiments showing the efficiency of Music-

dfs and the cross-fertilization between several sources of genomic information
are given in Section 4.

2 Defining Constraints on Several Datasets

2.1 Integrating Background Knowledge Within Constraints

Usual data-mining tasks rarely deal with a single dataset. Often it is necessary
to connect knowledge scattered in several heterogeneous sources. In constraint-
based mining, the constraints should effectively link different datasets and knowl-
edge types. In the domain of genomics, there is a natural need to derive con-
straints both from expression data and descriptions of the genes and/or biological
situations under consideration. Such constraints require to tackle various data
types - transcriptome data and background knowledge may be stored in the
boolean, numeric, symbolic or textual format.

Let us consider the transcriptomic mining context given in Figure 1. Firstly,
the involved data include a transcriptome dataset also called internal data. The
dataset is in the transactional format - the items correspond to genes and the
transactions represent biological situations. The occurrence of an item in a trans-
action signifies over-expression of the corresponding gene in the corresponding
biological situation (genes A, E and F are over-expressed in situation s1). Sec-
ondly, external data – a similarity matrix and textual resources – are considered.
They summarize background knowledge that contains various information on
items (i.e., genes). This knowledge is transformed into a similarity matrix and
a set of texts. Each field of the triangular matrix sij ∈ [0, 1] gives a similarity
measure between the items i and j. The textual dataset provides a description of
genes. Each row of this dataset contains a list of phrases characterizing the given
gene (details are given in Section 4.1). The mined patterns are composed of items
of the internal data, the corresponding transactions are usually also noted (and
possibly analyzed). The external data are used to further specify constraints in
order to focus on meaningful patterns. In other words, the constraints may stem
from all the datasets.

Table 1 provides the meaning of the primitive constraints applied in this text.
The meaning of the primitives is also illustrated by their real values taken from
the example in Figure 1. As primitives can address different datasets, the dataset
makes another parameter of the primitive (for clarity not shown in Table 1).

A real example of the compound constraint q(X) is given in Figure 1. The first
part (a) of q addresses the internal data and means that the biologist is inter-
ested in patterns having a satisfactory size – a minimal area. Indeed, area(X) =
freq(X)×length(X) is the product of the frequency of X and its length and means
that the pattern must cover a minimum number of situations and contain a mini-
mum number of genes. The other parts deal with the external data: (b) is used to
discard ribosomal patterns (one gene exception per pattern is allowed), (c) avoids

226 A. Soulet et al.

Internal data External data

Boolean matrix D

Situations Genes
s1 A E F
s2 B C D
s3 A B C D E F
s4 A B C D

Similarity matrix
A B C D E F

A .07 ? ? .2 0
B .06 ? ? 0
C .07 .05 .04
D .03 .1
E ?

Textual data
A ’metal ion binding’ ’transcription factor’

B ’serine-type peptidase activity’ ’proteolysis’

C ’DNA binding’ ’metal ion binding’

D ’ATP binding’ ’nucleotide binding’

E ’proteolysis’

F ’ATP binding’ ’metal ion binding’

freq, length,... regexpsumsim, svmsim,...

q(X) ≡ freq(X) × length(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, TEXT terms)) ≤ 1 (b)
∧ svsim(X, TEXT)/(svsim(X, TEXT) + mvsim(X, TEXT)) ≥ 0.7 (c)
∧ sumsim(X, TEXT)/svsim(X, TEXT) ≥ 0.025 (d)

Fig. 1. Example of a toy (transcriptomic) mining context and a constraint

Table 1. Examples of primitives and their values in the data mining context of Figure 1.
Let us note that item pairs of the pattern ABC are (A,B), (A,C) and (B, C).

Primitives Values
Boolean matrix

freq(X) frequency of X freq(ABC) = 2
length(X) length of X length(ABC) = 3

Textual data
regexp(X, RE) items of X whose associated phrases

match the regular expression RE
regexp(ABC,′ ∗ ion ∗′)
= AC

Similarity matrix
sumsim(X) the similarity sum over the set of item

pairs of X
sumsim(ABC) = 0.13

svsim(X) the number of item pairs in X for which
a similarity value is recorded

svsim(ABC) = 2

mvsim(X) the number of item pairs in X for which
a similarity value is missing

mvsim(ABC) = 1

insim(X, min, max) the number of item pairs of X whose
similarity lies between min and max

insim(ABC, 0.07, 1) =
1

patterns with prevailing items of an unknown function and (d) is to ensure a min-
imal average gene similarity. Section 4 provides another constraint q′.

Let us generalize the previous informal description. Let I be a set of items.
A pattern is a non-empty subset of I. D is a transactional dataset (or boolean
matrix) composed of rows usually called transactions. A pattern X is present
in D whenever it is included in one transaction of D at least. The constraint-
based mining task aims to discover all the patterns present in D and satisfying
a constraint q. Unfortunately, real constraints adressing several datasets (the
constraint q, for example) are difficult to mine because they have no suitable
property as monotonicity [12] or convertibility [16].

Efficient Mining Under Rich Constraints Derived from Various Datasets 227

2.2 Primitive-Based Constraints

This section presents our framework previously defined in [20] (and the declar-
ative language) enabling the user to set compound and meaningful constraints.
This framework naturally integrates primitives adressing external data (e.g.,
sumsim or regexp). Furthermore, in our framework constraints are freely built
of a large set of primitives. Beyond the primitives mentioned earlier there are
primitives such as {∧, ∨, ¬, <, ≤, ⊂, ⊆, +, −, ×, /, sum, max, min,∪, ∩, \}. The
compound constraints of this framework are called primitive-based constraints.
There are no formal properties required on the final constraints. The only prop-
erty which is required on the primitives to belong to our framework is a property
of monotonicity according to each variable of a primitive (when the others re-
main constant) [20]. We have already shown that the whole set of primitive-based
constraints constitutes a super-class of monotone, anti-monotone, succinct and
convertible constraints [19]. Consequently, the proposed framework provides a
flexible and rich constraint (query) language. The user can iteratively develop
complex constraints integrating various knowledge types.

Let us recall that the primitives and the constraints defined in [20] only address
one boolean data set. Current constraints can consider properties taken from a
wide scale of dataset types. In addition to the similarity and textual datasets,
the framework also enables to access numerical datasets having items in rows
and numerical attributes in columns. It implements the primitive X.val which
gives the list of values of the attribute named val for the items contained in the
pattern X .

We give below other examples of constraints belonging to primitive-based
constraints and highlighting the generality of our framework:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

freq(X) × length(X) ≥ 6 minimal area (nothing)
(min(X.val) + max(X.val))/2≤50 maximal mean (loose anti-monotone [2])
sum(X.val)/length(X) ≥ 25 minimal average (convertible [16])
AE ⊆ X having AE (monotone [12])
freq(X) ≥ 2 minimal frequency (anti-monotone [1])

A previous work [21] approximates primitive-based constraints by one anti-
monotone and one monotone constraint which can be pushed by DualMiner [5].
The next section describes an alternative solution in order to benefit from equiva-
lence classes. This way is often more efficient because it avoids the enumeration of
all the patterns which compose a particularly huge collection in the case of wide
datasets. Besides, in context of wide datasets, previous algorithm Music [20]
is ineffective due to the breadth-first search approach (see experiments in Sec-
tion 4.2). Then, Section 3 presents a new algorithm dedicated to primitive-based
constraints in wide datasets.

3 Music-dfs Tool

This section presents the Music-dfs tool (Mining with a User-SpecifIed
Constraint,Depth-FirstSearchapproach)whichbenefits fromtheprimitive-based

228 A. Soulet et al.

constraints presented in the previous section. Efficiency is achieved thanks to the
exploitation of the primitive and constraint properties. We start by giving the key
idea of the safe pruning process based on intervals.

3.1 Main Features of the Interval Pruning

The pruning process performed by Music-dfs is based on the key idea to exploit
properties of the monotonicity of the primitives (see Section 2) on the bounds
of intervals to prune them. This new kind of pruning is called interval pruning.
Given two patterns X ⊆ Y , the interval [X, Y], also called sub-algebra or sub-
lattice, corresponds to the set {Z ⊆ I | X ⊆ Z ⊆ Y }. Figure 2 depicts an
example with the interval [AB, ABCD] and the values of the primitives sumsim
and svsim.

AB

ABCD

ABDABC

0.07/1

?/?

0.2/3

?/?

sumsim(AB)/svsim(AB)

Fig. 2. Illustration of the interval pruning

Assume the constraint sumsim(X)/svsim(X) ≥ 0.25. As the values associ-
ated to the similarities are positive, sumsim(X) is an increasing function ac-
cording X . Thus sumsim(ABCD) is the highest sumsim value for the pat-
terns in [AB, ABCD]. Similarly, all the patterns of this interval have a higher
svsim(X) value than svsim(AB). Thereby, each pattern in [AB, ABCD] has its
average similarity lower or equal than sumsim(ABCD)/svsim(AB) = 0.2/1.
As this fraction does not exceed 0.25, no pattern of [AB, ABCD] can satisfy
the constraint and this interval can be pruned. We say that this pruning is
negative because no pattern satisfies the constraint. In the same way, if the
values of proper combinations of the primitives on the bounds of an interval
[X, Y] show that all the patterns in [X, Y] satisfy the constraint, then [X, Y]
is also pruned and this pruning is named positive. For instance, assuming that
sumsim(AB)/svsim(ABCD) ≥ 0.02, then all the patterns in [AB, ABCD] sat-
isfy the constraint.

In a more formal way, this approach is performed by two interval pruning op-
erators ��� and
�� introduced in [20] (but only for primitives handling boolean
data). The main idea of these operators is to recursively decompose the con-
straint to benefit from the monotone properties of the primitives and then to
safely negatively or positively prune intervals as depicted above. This process is
straightforwardly extended to all the primitives, no matter what kind of dataset
they regard. This highlights the generic properties of our framework, as well as
the feature of pushing all the parts of the constraint q into the mining step.
Table 2 gives the description of the lower and upper bounding operators corre-
sponding to the previous examples of primitives. In Table 2, the general notation

Efficient Mining Under Rich Constraints Derived from Various Datasets 229

Table 2. The definitions of ��� and 	�
 with particular primitives

e ∈ Ei Primitive(s) �e�〈X, Y 〉 	e
〈X, Y 〉
e1θe2 θ ∈ {∧,∨, +,×,∪,∩} �e1�〈X, Y 〉θ�e2�〈X, Y 〉 	e1
〈X, Y 〉θ	e2
〈X, Y 〉
e1θe2 θ ∈ {>,≥,⊃,⊇,−, /, \} �e1�〈X, Y 〉θ	e2
〈X, Y 〉 	e1
〈X, Y 〉θ�e2�〈X, Y 〉
θe1 θ ∈ {¬, freq, } θ	e1
〈X, Y 〉 θ�e1�〈X, Y 〉

θ(e1.val) θ ∈ {min} θ(e1
〈X, Y 〉.val) θ(�e1�〈X, Y 〉.val)
θ(e1) θ ∈ {length} θ�e1�〈X, Y 〉 θ	e1
〈X, Y 〉

θ(e1.val) θ ∈ {sum, max} θ(�e1�〈X, Y 〉.val) θ(e1
〈X, Y 〉.val)
θ(e1) θ ∈ {sumsim, svsim, θ(�e1�〈X, Y 〉) θ(e1
〈X, Y 〉)

mvsim}
θ(e1, m, M) θ ∈ {insim} θ(�e1�〈X, Y 〉, m, M) θ(e1
〈X, Y 〉, m, M)
θ(e1, RE) θ ∈ {regexp} θ(�e1�〈X, Y 〉, RE) θ(e1
〈X, Y 〉, RE)

c ∈ Ei - c c
X ∈ LI - X Y

Ei designates one space among B, �+ or LI = 2I and Ei the associated expres-
sions (for instance, the set of constraints Q for the booleans B).

The next section indicates how the intervals are built.

3.2 Interval Condensed Representation

As indicated in Section 1, levelwise algorithms are not suitable to mine datasets
with a large number of items due to the huge number of candidates growing
exponentially according to the number of items. We adopt a depth-first search
strategy instead of enumerating the candidate patterns and avoiding subsequent
memory failures. We introduce a new and specific closure operator based on a
prefix ordering relation �. We show that this closure operator is central to the
interval condensed representation (Theorem 1) and enables efficient pruning of
the search space.

The prefix ordering relation � starts from an arbitrary order over items A <
B < C < . . . as done in [16]. We say that an ordered pattern X = x1x2 . . . xn

(i.e., ∀i < j, we have xi < xj) is a prefix of an ordered pattern Y = y1y2 . . . ym

and note X � Y iff we have n ≤ m and ∀i ∈ {1, . . . , n}, xi = yi. For instance, the
prefixes of ABCD are the patterns A, AB, ABC and ABCD. On the contrary,
AD �� ADC because the ordered form of ADC corresponds to ACD, and AD
is not a prefix of ACD.

Definition 1 (Prefix-closure). The prefix-closure of a pattern X, denoted
cl�(X), is the pattern {a ∈ I|∃Y ⊆ X such that Y � Y ∪ {a} and freq(Y a) =
freq(Y)}.

The pattern cl�(X) gathers together the items occurring in all the transactions
containing Y ⊆ X such that Y is a prefix of Y ∪{a}. The fixed points of operator
cl� are named the prefix-closed patterns. Let us illustrate this definition on our
running example (cf. Figure 1). The pattern ABC is not a prefix-closed pattern

230 A. Soulet et al.

because ABC is a prefix of ABCD and freq(ABCD) = freq(ABC). On the
contrary, ABCD is prefix-closed. We straightforwardly deduce that any pattern
and its prefix-closure have the same frequency. For instance, as cl�(ABC) =
ABCD, freq(ABC) = freq(ABCD) = 2.

A closure operator is a function satisfying three main properties: extensiv-
ity, isotony, and idempotency [22]. Next property shows that cl� is a closure
operator:

Property 1 (Closure operator). The prefix-closure operator cl� is a closure
operator.

Proof. Extensivity: Let X be a pattern and a ∈ X . We have {a} ⊆ X and
obviously, a � a and freq(a) = freq(a). Then, we obtain that a ∈ cl�(X) and
cl� is extensive. Isotony: Let X ⊆ Y and a ∈ cl�(X). There exists Z ⊆ X
such that Z � Za and freq(Za) = freq(Z). As we also have Z ⊆ Y (and
freq(Za) = freq(Z)), we obtain that a ∈ cl�(Y) and conclude that cl�(X) ⊆
cl�(Y). Idempotency: Let X be a pattern. Let a ∈ cl�(cl�(X)). There exists
Z ⊆ cl�(X) such that freq(Za) = freq(Z) with Z � Za. As Z ⊆ cl�(X), for
all ai ∈ Z, there is Zi ⊆ X such that freq(Ziai) = freq(Zi) with Zi � Ziai. We
have

⋃
i Zi �

⋃
i Zia and freq(

⋃
i Zi) = freq(

⋃
i Zia) (because freq(

⋃
i Zi) =

freq(Z)). As the pattern
⋃

i Zi ⊆ X , a belongs to cl�(X) and then, cl� is
idempotent. ��
Property 1 is important because it enables to infer results requiring the properties
of a closure operator. First, this new prefix-closure operator designs equivalence
classes through the lattice of patterns. More precisely, two patterns X and Y
are equivalent iff they have the same prefix-closure (i.e., cl�(X) = cl�(Y)). Of
course, as cl� is idempotent, the maximal pattern (w.r.t. ⊆) of a given equiva-
lence class of X corresponds to the prefix-closed pattern cl�(X). Conversely, we
call prefix-free patterns the minimal patterns (w.r.t. ⊆) of equivalence classes.
Second, closure properties enable to prove that the prefix-freeness is an anti-
monotone constraint (see Property 2 in the next section).

Contrary to the equivalence classes defined by the Galois closure [4, 15], equiv-
alence classes provided by cl� have a unique prefix-free pattern. This allows to
prove that a pattern belongs to one interval only and provides the important
result on the interval condensed representation (cf. Theorem 1). This result can-
not be achieved without the new closure operator. Lemma 1 indicates that any
equivalence class has a unique prefix-free pattern:

Lemma 1 (Prefix-freeness operator). Let X be a pattern, there exists an
unique minimal pattern (w.r.t. ⊆), denoted fr�(X), in its equivalence class.

Proof. Supposing that X and Y are two minimal patterns of the same equiv-
alence class: we have cl�(X) = cl�(Y). As X and Y are different, there exists
a ∈ X such that a �∈ Y and a ≤ min≤{b ∈ Y \X} (or we swap X and Y). As X is
minimal, no pattern Z ⊆ X ∩ Y satisfies that Z � Za and freq(Za) = freq(Z).
Besides, for all Z such that Y ∩ X ⊂ Z ⊂ Y , we have Z �� Za because a is
smaller than any item of Y \X . So, a does not belong to cl�(Y) and then, we

Efficient Mining Under Rich Constraints Derived from Various Datasets 231

obtain that cl�(X) �= cl�(Y). Thus, we conclude that any equivalence class
exactly contains one prefix-free pattern. ��
Lemma 1 means that the operator fr� links a pattern X to the minimal pat-
tern of its equivalence class, i.e. fr�(X). X is prefix-free iff fr�(X) = X . Any
equivalence class corresponds to an interval delimited by one prefix-free pattern
and its prefix-closed pattern (i.e., [fr�(X), cl�(X)]). For example, AB (resp.
ABCD) is the prefix-free (resp. prefix-closed) pattern of the equivalence class
[AB, ABCD].

Now let us show that the whole collection of the intervals formed by all the
prefix-free patterns and their prefix-closed patterns provides an interval con-
densed representation where each pattern X is present only once in the set of
intervals.

Theorem 1 (Interval condensed representation). Each pattern X present
in the dataset is included in the interval [fr�(X), cl�(X)]. Besides, the number
of these intervals is less than or equal to the number of patterns.

Proof. Let X be a pattern and R = {[fr�(X), cl�(X)]|freq(X) ≥ 1}. Lemma 1
proves that X is exactly contained in [fr�(X), cl�(X)]. The latter is unique.
As X belongs to R by definition, we conclude that R is a representation of any
pattern. Now, the extensivity and the idempotency of prefix-closure operator cl�
ensure that |R| ≤ |{X ⊆ I such that freq(X) ≥ 1}|. This proves Theorem 1. ��
In the worst case the size of the condensed representation is the number of pat-
terns (each pattern is its own prefix-free and its own prefix-closed pattern). But,
in practice, the number of intervals is low compared to the number of patterns
(in our running example, only 23 intervals sum up the 63 present patterns).

The condensed representation highlighted by Theorem 1 differs from the con-
densed representations of frequent patterns based on the Galois closure [4, 15]:
in this last case, intervals are described by a free (or key) pattern and its Ga-
lois closure and a frequent pattern may appear in several intervals. We claim
that the presence of a pattern in a single interval brings meaningful advantages:
the mining is more efficient because each pattern is tested at most once. This
property improves the synthesis of the output of the mining process and facili-
tates its analysis by the end-user. The next section shows that by combining this
condensed representation and the interval pruning operators, we get an interval
condensed representation of primitive-based constrained patterns.

3.3 Mining Primitive-Based Constraints in Large Datasets

When running, Music-dfs enumerates all the intervals sorted in a lexicographic
order and checks whether they can be pruned as proposed in Section 3.1. The
enumeration benefits from the anti-monotonicity property of the prefix-freeness
(cf. Property 2). The memory requirements grow only linearly with the number
of items and the number of transactions.

Property 2. The prefix-freeness is an anti-monotone constraint (w.r.t. ⊆).

232 A. Soulet et al.

The proof of Property 2 is very similar to those of the usual freeness [4, 15]:

Proof. Let X be a pattern which is not a prefix-free pattern. So, there is Z ⊂ X
such that cl�(Z) = cl�(X). Let Y be a pattern with X ⊆ Y . First, we observe
that cl�(Y) = cl�(X∪(Y \X)) and cl�(X∪(Y \X)) = cl�(cl�(X)∪cl�(Y \X))
(usual property of closure operators). As cl�(Z) = cl�(X), we obtain that
cl�(cl�(X) ∪ cl�(Y \X)) = cl�(cl�(Z) ∪ cl�(Y \X)) and then, cl�(cl�(Z) ∪
cl�(Y \X)) = cl�(Z ∪(Y \X)). Finally, as Z is a proper subset of X , the pattern
Z ∪ (Y \X) is a proper subset of Y . Thus, we conclude that Y is not prefix-free.

��
In other words, the anti-monotonicity ensures us that once we know that a
pattern is not prefix-free, any superset of this pattern is not prefix-free any-
more [1, 12]. Algorithms 1 and 2 give the sketch of Music-dfs.

Algorithm 1. GlobalScan

Input: A prefix-pattern X, a primitive based constraint q and a dataset D
Output: Interval condensed representation of constrained patterns having X as prefix
1: if ¬P refixF ree(X) then return ∅ // anti-monotone pruning
2: return LocalScan([X, cl�(X)], q,D) // local mining

∪
⋃
{GlobalScan(Xa, q,D)|a ∈ I ∧ a ≥ max≤ X} // recursive enumeration

Algorithm 2. LocalScan

Input: An interval [X, Y], a primitive based constraint q and a dataset D
Output: Interval condensed representation of constrained patterns of [X, Y]
1: if �q�〈X, Y 〉 then return {[X, Y]} // positive interval pruning
2: if ¬	q
〈X, Y 〉 then return ∅ // negative interval pruning
3: if q(X) then return [X, X] ∪

⋃
{LocalScan([Xa, cl�(Xa)], q,D)|a ∈ Y \X}

4: return
⋃
{LocalScan([Xa, cl�(Xa)], q,D)|a ∈ Y \X} // recursive division

Music-dfs scans the whole search space by running GlobalScan on each
item of I. GlobalScan recursively performs a depth-first search and stops
whenever a pattern is not prefix-free (Line 1, GlobalScan). For each prefix-
free pattern X , it computes its prefix-closed pattern and builds [X, cl�(X)] (Line
2, GlobalScan). Then, LocalScan tests this interval by using the operators
��� and
�� informally presented in Section 3.1. If the interval pruning can be
performed, the interval is selected (positive pruning, Line 1 from LocalScan)
or rejected (negative pruning, Line 2 from LocalScan). Otherwise, the inter-
val is explored by recursively dividing it (Line 3 or 4 from LocalScan). The
decomposition of the intervals is done so that each pattern is considered only
once. The next theorem provides the correctness of Music-dfs:

Theorem 2 (Correctness). Music-dfs mines soundly and completely all the
patterns satisfying q by means of intervals.

Efficient Mining Under Rich Constraints Derived from Various Datasets 233

Proof. Property 2 ensures us that Music-dfs enumerates all the interval con-
densed representation. Thereby, any pattern is considered (Theorem 1) individ-
ually or globally with the safe pruning stemmed from to the interval pruning
(see Section 3.1). ��
An additional anti-monotone constraint can be pushed in conjunction of prefix-
freeness (Line 1, GlobalScan). This constraint (e.g., minimal frequency
constraint) optimizes the extraction by reducing more the search space. Such
anti-monotone constraint is automatically deduced from the original constraint
q in [21].

4 Mining Constrained Patterns from Transcriptomic
Data

This section depicts the effectiveness of our approach on a transcriptomic case
study. We experimentally show two results. First, the usefulness of the interval
pruning strategy of Music-dfs (the other prototypes fail for such large data, cf.
Section 4.2). Second, BK enables to automatically focus on the most plausible
candidate patterns (cf. Section 4.3). This underlines the need to mine constrained
patterns by taking into account external data. If not mentioned otherwise, the
experiments are run on the genomic data described in Section 4.1.

4.1 Gene Expression Data and Background Knowledge

In this experiment we deal with the SAGE (Serial Analysis of Gene Expres-
sion) [24] human expression data downloaded from the NCBI website
(www.ncbi.nlm.nih.gov). The final binary dataset contains 11082 genes tested
in 207 biological situations, each gene can be either over-expressed in the given
situation or not. The biological details regarding gene selection, mapping and
binarization can be seen in [10].

BK available in literature databases, biological ontologies and other sources
is used to help to focus automatically on the most plausible candidate patterns.
We have experimented with the gene ontology (GO) and free-text data. First,
the available gene databases were automatically searched and the records for
each gene were built (around two thirds of genes have non-empty records, there
is no information available for the rest of them). Then, various similarity met-
rics among the gene records were proposed and calculated. More precisely, the
gene records were converted into the vector space model [18]. A single gene cor-
responds to a single vector, whose components correspond to a frequency of a
single term from the vocabulary. The similarity between genes was defined as the
cosine of the angle between the corresponding term-frequency inverse-document-
frequency (TFIDF) [18] vectors. TFIDF representation statistically measures
how important a term is to a gene record. Moreover, the gene records were also
simplified to get a condensed textual description. More details on text mining,
gene ontologies and similarities are in [10].

www.ncbi.nlm.nih.gov

234 A. Soulet et al.

4.2 Efficiency of Music-dfs

Dealing with large datasets Let us show the necessity of the depth-first search and
usefulness of the interval pruning strategy of Music-dfs. All the experiments
were conducted on a 2.2 GHz Xeon processor with 3GB RAM running Linux.

The first experiment highlights the importance of the depth-first search. We
consider the constraint addressing patterns having an area ≥ 70 (the minimal
area constraint has been introduced in Section 2) and appearing at least 4 times
in the dataset. Music-dfs only spends 7sec to extract 212 constrained patterns. In
comparison, for the same binary dataset, the levelwise approach1 presented in [20]
fails after 963sec whenever the dataset contains more than 3500 genes. Indeed, the
candidate patterns necessary to build the output do not fit in memory.

Comparison with prototypes coming from the FIMI repository
(fimi.cs.helsinki.fi) shows that efficient implementations like kDCI [13],
LCM (ver. 2) [23], COFI [25] or Borgelt’s Apriori [3] fail with this binary
dataset to mine frequent patterns occuring at least 4 times. Borgelt’s Eclat [3]
and Afopt [11] which are depth-first approaches, are able to mine with
this frequency constraint. But they require a post-processing step for other
constraints than the frequency (e.g., area, similarity-based constraints).

The power of Music-dfs can also be illustrated on any large benchmark
dataset (i.e., containing many transactions). Let us consider the mushroom
dataset taken from FIMI repository . Figure 3 presents the running times for
the Music-dfs, Music, Apriori and Eclat algorithms with the constraints
freq(X) × length(X) ≥ α (on the left) and sum(X.val)/length(X) ≥ α (on
the right). The latter is applied on item values (noted val) randomly gen-
erated within the range [0, 100]. An additional minimal frequency constraint
freq(X) ≥ 100 is used in order to make running of Apriori and Eclat feasible.

As Apriori and Eclat do not push the minimal area/average constraints
into the mining, they require a post-processing step to select the right patterns

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2000 4000 6000 8000 10000

T
im

e
(s

)

Minimal area

Mushroom : minimal area constraint

Music-dfs
Music
Eclat

Apriori

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

T
im

e
(s

)

Minimal average

Mushroom : minimal average constraint

Music-dfs
Music
Eclat

Apriori

Fig. 3. Runtime performances with minimal area/average constraint on mushroom

1 We do not use external data because this version does not deal with external data.

fimi.cs.helsinki.fi

Efficient Mining Under Rich Constraints Derived from Various Datasets 235

with respect to these constraints. Thus their curves (cf. Figure 3) do not depend
on minimal area/average threshold α and are flat. Let us note that we neglect the
time of the post-processing step therefore the total time spent by these methods is
supposed to be even higher than shown. We observe that Music-dfs clearly out-
performs Music and Apriori. Moreover, Music-dfs is often more efficient than
Eclat as it benefits from the constraint. The experimental study in [19] confirms
that Music-dfs is efficient with various constraints and various datasets.

Impact of interval pruning The next experiment shows the great role of the inter-
val pruning strategy. For this purpose, we compare Music-dfs with its modifica-
tion that does not prune. The modification, denoted Music-dfs-filter, mines
all the patterns that satisfy the frequency threshold first, the other primitives
are applied in the post-processing step. We use two typical constraints needed
in the genomic domain and requiring the external data. These constraints and
the time comparison between Music-dfs and Music-dfs-filter are given in
Figure 4. The results show that post-processing is feasible until the frequency
threshold generates reasonable pattern sets. For lower frequency thresholds, the
number of patterns explodes and large intervals to be pruned appear. The in-
terval pruning strategy decreases runtime and scales up much better than the
comparative version without interval pruning and Music-dfs becomes in the
order of magnitude faster.

 1

 10

 100

 1000

 10000

 4 5 6 7

tim
e[

s]

frequency threshold

Music-dfs
Music-dfs-filter

 1

 10

 100

 1000

 10000

 100000

 4 5 6 7

tim
e[

s]

frequency threshold

Music-dfs
Music-dfs-filter

Fig. 4. Efficiency of interval pruningwith decreasing frequency threshold. The left image
deals with the constraint freq(X) ≥ thres∧ lenght(X) ≥ 4∧sumsim(X)/svsim(X) ≥
0.9 ∧ svsim(X)/(svsim(X) + mvsim(X)) ≥ 0.9. The right image deals with the con-
straint freq(X) ≥ thres ∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) = 0.

4.3 Use of Background Knowledge to Mine Plausible Patterns

This transcriptomic case study demonstrates that constraints coming from the
BK can reduce the number of patterns, they can express various kinds of interest
and the patterns that tend to reappear are likely to be recognized as interesting

236 A. Soulet et al.

by an expert. One of the goals of any pattern is to generalize the individual
gene synexpressions observed in the individual situations. Although it seems
that biologists focus on individual biological situations, they follow very similar
generalization goals. The most valuable knowledge is extracted from the patterns
that concern genes with interesting common features (e.g., process, function,
location, disease) whose synexpression is observed in a homogeneous biological
context (i.e., in a number of analogous biological situations). An example of this
context is the cluster of medulloblastoma SAGE libraries discovered in one of the
constrained patterns (see the end of this section). It is obvious that to get such
patterns and to pursue the goals mentioned above, a tool dealing with external
data is needed.

Let us consider all the patterns having a satisfactory size which is translated
by the constraint area ≥ 202. We get nearly half a million different patterns
that are joined into 37852 intervals. Although the intervals prove to provide a
good condensation, the manual search through this set is obviously infeasible as
the interpretation of patterns is not trivial and asks for frequent consultations
with medical databases. The biologists prefer sets with tens of patterns/intervals
only.

Increasing the threshold of the area constraint to get a reasonable number of
patterns is rather counter-productive. The constraint area ≥ 75 led to a small
but uniform set of 56 patterns that was flooded by the ribosomal proteins which
generally represent the most frequent genes in the dataset. Biologists rated these
patterns as valid but uninteresting.

The most valuable patterns expected by biologists – denoted as meaningful or
plausible patterns – have non-trivial size containing genes and situations whose
characteristics can be generalized, connected, interpreted and thus transformed
into knowledge. To get such patterns, constraints based on the external data have
to be added to the minimal area constraint just like in the constraint q given
in Section 2. It joins the minimal area constraint with background constraints
coming from the NCBI textual resources (gene summaries and adjoined PubMed
abstracts). There are 46671 patterns satisfying the minimal area constraint (the
part (a) of the constraint q), but only 9 satisfy q. This shows the efficiency of
reduction of patterns brought by the BK.

A cross-fertilization with other external data is obviously favourable. So, we
use the constraint q′ which is similar to q, except that the functional Gene
Ontology is used instead of NCBI textual resources and a similarity constraint
is added (part (e) of q′).

q′(X) ≡ area(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) ≤ 1 (b)
∧ svsim(X, GO)/(svsim(X, GO) + mvsim(X,GO)) ≥ 0.7 (c)
∧ sumsim(X,GO)/svsim(X, GO) ≥ 0.025 (d)
∧ insim(X, 0.5, 1, GO)/svsim(X,GO) ≥ 0.6 (e)

2 This threshold has been settled by statistical analysis of random datasets having the
same properties as the original SAGE data. First spurious patterns start to appear
for this threshold area.

Efficient Mining Under Rich Constraints Derived from Various Datasets 237

Only 2 patterns satisfy q′. A very interesting observation is that the pattern3

that was identified by the expert as one of the “nuggets” provided by q is also
selected by q′. This pattern can be verbally characterized as follows: it consists
of 4 genes that are over-expressed in 6 biological situations, it contains at most
one ribosomal gene, the genes share a lot of common terms in their descriptions
as well as they functionally overlap, at least 3 of the genes are known (have
a non-empty record) and all of the biological situations are medulloblastomas
which are very aggressive brain tumors in children. The constraints q and q′

demonstrate two different ways to reach a compact and meaningful output that
can be easily human surveyed.

5 Conclusion

Knowledge discovery from a large binary dataset supported by heterogeneous
BK is an important task. We have proposed a generic framework to mine pat-
terns with a large set of constraints linking the information scattered in various
knowledge sources. We have presented an efficient new algorithm Music-dfs

which soundly and completely mines such constrained patterns. Effectiveness
comes from an interval pruning strategy based on prefix free patterns. To the
best of our knowledge, there is no other constraint-based tool able to solve such
constraint-based tasks.

The transcriptomic case study demonstrates that our approach can handle
large datasets. It also shows practical utility of the flexible framework integrating
heterogeneous knowledge sources. The language of primitives applied to a wide
spectrum of transcriptomic data results in constraints formalizing a viable notion
of interestingness.

Acknowledgements. The authors thank the CGMC Laboratory (CNRS UMR
5534, Lyon) for providing the gene expression database and many valuable com-
ments. This work has been partially funded by the ACI “masse de données”
(French Ministry of research), Bingo project (MD 46, 2004-07).

References

[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pp. 432–444 (1994)

[2] Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining.
In: Ho et al. [7] pp. 114–124

[3] Borgelt, C.: Efficient implementations of Apriori and Eclat. In: Goethals, Zaki [6]
[4] Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation

of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal 7(1), 5–22 (2003)

3 The pattern consists of 4 genes KHDRBS1 NONO TOP2B FMR1 over-expressed in
6 biological situations BM P019 BM P494 BM P608 BM P301 BM H275 BM H876.
BM stands for brain medulloblastoma.

238 A. Soulet et al.

[5] Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: A dual-pruning al-
gorithm for itemsets with constraints. Data Min. Knowl. Discov. 7(3), 241–272
(2003)

[6] Goethals, B., Zaki, M.J. (eds.): FIMI ’03, Frequent Itemset Mining Implemen-
tations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining
Implementations, 19 December 2003, Melbourne, Florida, USA, CEUR Workshop
Proceedings, vol. 90 (2003) CEUR-WS.org

[7] Ho, T.-B., Cheung, D., Liu, H. (eds.): Advances in Knowledge Discovery and Data
Mining, PAKDD 2005. LNCS (LNAI), vol. 3518. Springer, Heidelberg (2005)

[8] Hébert, C., Crémilleux, B.: Mining frequent δ-free patterns in large databases. In:
Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735,
pp. 124–136. Springer, Heidelberg (2005)

[9] Jeudy, B., Rioult, F.: Database transposition for constrained (closed) pattern
mining. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 89–
107. Springer, Heidelberg (2005)

[10] Kléma, J., Soulet, A., Crémilleux, B., Blachon, S., Gandrillon, O.: Mining plau-
sible patterns from genomic data. In: Lee, D., Nutter, B., Antani, S., Mitra, S.,
Archibald, J. (eds.) CBMS 2006, the 19th IEEE International Symposium on
Computer-Based Medical Systems, Salt Lake City, Utah, pp. 183–188. IEEE Com-
puter Society Press, Los Alamitos (2006)

[11] Liu, G., Lu, H., Yu, J.X., Wei, W., Xiao, X.: AFOPT: An efficient implementation
of pattern growth approach. In: Goethals, Zaki [6]

[12] Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

[13] Orlando, S., Lucchese, C., Palmerini, P., Perego, R., Silvestri, F.: kDCI: a multi-
strategy algorithm for mining frequent sets. In: Goethals, Zaki [6]

[14] Pan, F., Cong, G., Tung, A.K.H., Yang, Y., Zaki, M.J.: CARPENTER: find-
ing closed patterns in long biological datasets. In: Proceedings of the 9th ACM
SIGKDD international conference on Knowledge discovery and data mining
(KDD’03), Washington, DC, USA, pp. 637–642. ACM Press, New York (2003)

[15] Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

[16] Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible
constraints. In: ICDE, pp. 433–442. IEEE Computer Society, Los Alamitos (2001)

[17] Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut,
J.-F.: Mining concepts from large sage gene expression matrices. In: Boulicaut,
J.-F., Dzeroski, S. (eds.) KDID, pp. 107–118. Rudjer Boskovic Institute, Zagreb,
Croatia (2003)

[18] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing Management 24(5), 513–523 (1988)

[19] Soulet, A.: Un cadre générique de découverte de motifs sous contraintes fondées
sur des primitives. PhD thesis, Université de Caen Basse-Normandie, France, 2006
(to appear)

[20] Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints.
In: Ho” et al. (eds.), [7] pp. 661–671 (2005)

[21] Soulet, A., Crémilleux, B.: Exploiting Virtual Patterns for Automatically Pruning
the Search Space. In: Bonchi, F., Boulicaut, J.-F. (eds.) Knowledge Discovery in
Inductive Databases. LNCS, vol. 3933, pp. 98–109. Springer, Heidelberg (2006)

[22] Stadler, B.M.R., Stadler, P.F.: Basic properties of filter convergence spaces (2002)

CEUR-WS.org

Efficient Mining Under Rich Constraints Derived from Various Datasets 239

[23] Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In: Bayardo Jr., R.J., Goethals, B., Zaki, M.J.
(eds.) FIMI. CEUR Workshop Proceedings, vol. 126 (2004), CEUR-WS.org

[24] Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene ex-
pression. Science 270, 484–487 (1995)

[25] Zäıane, O.R., El-Hajj, M.: COFI-tree mining: A new approach to pattern growth
with reduced candidacy generation. In: Goethals, Zaki [6]

CEUR-WS.org

	Introduction
	Defining Constraints on Several Datasets
	Integrating Background Knowledge Within Constraints
	Primitive-Based Constraints

	Music-dfs Tool
	Main Features of the Interval Pruning
	Interval Condensed Representation
	Mining Primitive-Based Constraints in Large Datasets

	Mining Constrained Patterns from Transcriptomic Data
	Gene Expression Data and Background Knowledge
	Efficiency of Music-dfs
	Use of Background Knowledge to Mine Plausible Patterns

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

