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Abstract

Contemporary molecular biology deals with wide and heterogeneous sets of mea-

surements to model and understand underlying biological processes including

complex diseases. Machine learning provides a frequent approach to build such

models. However, the models built solely from measured data often suffer from

overfitting, as the sample size is typically much smaller than the number of mea-

sured features. In this paper, we propose a random forest-based classifier that

reduces this overfitting with the aid of prior knowledge in the form of a feature

interaction network. We illustrate the proposed method in the task of disease

classification based on measured mRNA and miRNA profiles complemented by

the interaction network composed of the miRNA-mRNA target relations and

mRNA-mRNA interactions corresponding to the interactions between their en-

coded proteins. We demonstrate that the proposed network-constrained forest

employs prior knowledge to increase learning bias and consequently to improve

classification accuracy, stability and comprehensibility of the resulting model.

The experiments are carried out in the domain of myelodysplastic syndrome

that we are concerned about in the long term. We validate our approach in the

public domain of ovarian carcinoma, with the same data form. We believe that

the idea of a network-constrained forest can straightforwardly be generalized to-
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wards arbitrary omics data with an available and non-trivial feature interaction

network.

Keywords: omics data, microRNA, machine learning, random forest, domain

knowledge
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1. Introduction

Onset and progression of heterogeneous multifactorial diseases depend on a

combination of defected or altered genes, which is often too overly complex to be

deciphered from an individual’s genome only; instead it can be better manifested

during the expression of genes [1]. Gene expression (GE) is the overall process5

by which information from a genome is transferred towards anatomical and

physiological characteristics generally called phenotype. During the process, a

gene is transcribed into the molecule of messenger RNA (mRNA), subjected

to several transcription and translational regulatory mechanisms, and usually

translated into a protein. The final protein level strongly afflicts the phenotype.10

Any dysfunction during the whole process may easily cause a disease.

The expression of a gene can be quantified as an abundance of gene transcript

during its expression process. Current progress in high-throughput technologies

such as microarrays and RNA sequencing enables affordable measurement of

wide-scale gene expression on the transcriptome level. Therefore, the expression15

of thousands of genes can all be measured at once in each sample. One may thus

feel capable of predicting disease outcome, progress or treatment response based

on acquired GE data [2]. The phenotype prediction stems from the simplified

assumption that a higher amount of detected mRNA implies a higher amount of

translated protein, and therefore a higher manifestation of the respective gene.20

Phenotype prediction based on GE data is a natural learning task. However,

many instances of this task become non-trivial within currently available GE

data. The data are noisy and a small sample size together with an immense

number of redundant features often leads to overfitting.
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Gene expression can be seen as a complex dynamic process with many stages,25

components and regulatory mechanisms. A phenotype is not afflicted by partic-

ular genes separately, but there is a concert of genes involved in the expression

process. The expression activities of genes are often indirectly linked together

by interactions between respective proteins. The protein-protein interactions [3]

may be involved in transporting and metabolic pathways, or in constitution of30

protein complexes. Another component of the gene network are the interactions

between microRNAs and their target genes [4].

MicroRNAs (miRNAs) [5] serve as a component of the complex machinery

which eukaryotic organisms use to tune protein synthesis. They are short (∼21

nucleotides) noncoding RNA sequences which mediate post-transcriptional re-35

pression of mRNA via RNA-induced silencing complex (RISC), where miRNA

serve as a template for recognizing complementary mRNA. The complementar-

ity level of miRNA-mRNA binding initiates one of two possible mechanisms:

the complete homology triggers degradation of target mRNA, whereas a partial

complementarity leads to translational inhibition of target mRNA [6]. The level40

of miRNA expression can be measured by (e.g.) miRNA microarrays, analog-

ically to mRNA profiling. The interactions between miRNAs and their target

mRNAs, as well as interactions between proteins, are experimentally assessed

in vitro or algorithmically predicted based on the structural properties of inter-

acting molecules.45

Since the journey from a genome to its phenotype manifestation is so com-

plex and nontrivial, current trends in gene expression data analysis aim toward

the integration of multiple measurement types from multiple stages of the gene

expression process [7], acquired from the same set of tissues. Such an inte-

grative analysis should provide a broader view of gene expression as a whole.50

This work extends our previous approaches to integrate traditional mRNA and

miRNA measurements in the domain of myelodysplastic syndrome data based

on non-negative matrix factorization with prior knowledge [8] and subtractive

aggregation for deterministic models of the inhibition effect of miRNA [9]. In

this paper, we propose a new method, based on random forest framework, which55
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integrates heterogeneous omics features through the knowledge of their mutual

interactions. Interlinking the features by their possible interactions improves the

robustness and interpretability of resulting models, and improves their empirical

validity in terms of classification accuracy.

The paper is organized as follows. Section 2 reviews the recent efforts on60

regularization with prior knowledge in ill-posed problems with special emphasis

on omics data. Section 3 firstly describes the data domain and subsequent clas-

sification tasks. Then the method itself, designed for these classification tasks

is sketched, while a way of interpreting resulting models is proposed. Next, the

ovarian carcinoma domain used for validation as well as the format of employed65

domain knowledge is described. The methodology developed and used is deeply

theoretically analyzed in Sect. 4. Section 5 provides experimental results in

terms of empirical validity and interpretability respectively, i.e., the predictive

accuracy and examples of discovered interactions along with their biological

meaning. The results are then discussed in Sect. 6. Section 7 concludes the70

paper.

2. Related Work

Learning from GE data is a challenging task due to its complexity and

heterogeneity. On top of that, the number of variables p greatly exceeds the

number of observations n, we are referring to the so-called n � p problem75

that leads to overfitting [10]. However, certain learning algorithms may provide

promising results even in ill posed problems like this. For example, support

vector machine (SVM) [11] is capable of dealing with a large dimensionality

with sufficient generalization. However, in GE data analysis, the model itself is

often just as appreciated as its output. Henceforth, SVM is more or less a black-80

box model, which does not provide sufficient insight. Conversely, a decision tree

is easily comprehensible, but its prediction results are often weak [12]. Since GE

data have a large dimensionality with few samples, there is a great number of

hypotheses, often based merely on random perturbations, which can perfectly
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split the data into classes, but lack generalization. Counter-intuitively, even85

decision stumps (one-level decision trees) are overfitted as a consequence.

The way to address overfitting in general is regularization [13]. Regulariza-

tion restrains the space of all hypotheses to improve generalization. In terms

of machine learning, the trade off between bias and variance is tuned to delib-

erate a smaller structural risk. Besides initial dimensionality reduction, it may90

be implemented geometrically as in the case of margin classifiers [14], through

certain hypothesis assumptions, complexity penalization or domain knowledge.

We will focus on the last approach here, in which we promote such hypotheses

that are in accord with the existing knowledge.

The prior knowledge-based regularization approaches are popular in the95

molecular biology domain; in particular, in omics data analysis. In the most

general way, the domain knowledge is encoded as conditional probability in sta-

tistical relational learning [15, 16], or as first-order predicates in inductive logic

programming [17, 18]. The advantage of these approaches is the ability to tackle

the knowledge from an arbitrary domain; i.e., not only omics. However, these100

approaches are computationally expensive in domains with a large dimension.

In omics problems where the dimension commonly exceeds 104, it often implies

substantial problem reduction in terms of pre-processing. An alternative way is

to develop a specialized learning method dedicated to a certain domain, which

stems from the domain functionality and its specific assumptions and integrates105

them into a learning framework. As an example of dedicated method see net-

work regularized SVM and logistic regression, [19, 20] and [21] respectively,

where genes related by prior known interactions are expected to contribute sim-

ilarly to the classification function. Among others, [22] gives an overview of

recent methods for the incorporation of biological prior knowledge on molecular110

interactions and known cellular processes into the feature selection process to

improve risk prediction of patients. [23] exemplifies a tool for the incorpora-

tion of gene network data into support vector machines. [24] proposes both

supervised and unsupervised learning based on spectral decomposition of gene

expression profiles with respect to the eigenfunctions of the underlying gene115
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network graph.

Regularization through domain knowledge is not such a frequent issue in the

case of ensemble classifiers. The prior knowledge model and ensemble model

are often regarded as two sides of the same coin, as both try to address the

generalization problem and model enhancement. However, there is no reason120

not to combine both. [25] uses gene ontology terms and miRNA-mRNA target

relations to create an ensemble of centroid-based weak classifiers based on tree-

like modules to forecast the prognosis of breast cancer patients. [26] integrates

linguistic knowledge into random forest language models originally based on n-

gram counts only. The author illustrates the applicability of the ensembles in125

morphological language models of Arabic, prosodic language models for speech

recognition and a combination of syntactic and topic information in language

models. [27] proposes a random forest-based method, where the building of

trees is guided by a protein network. The authors proposed a procedure for the

validation of network decision modules through the forest and demonstrated130

that the validated modules are robust and reveal causal mechanisms of cancer

development. However, their search strategy most likely does not improve the

classification accuracy of resulting models. [28] iteratively builds random forests

through a weighted sampling of the variables taken from modules of correlated

genes. They use the OOB (out-of-bag) importance estimate of each gene in-135

volved in the forest to adapt its weight and the weight of its module for the

sampling session in the next iteration. Using bootstrapping with subsequent

OOB assumes a sufficiently large data sample.

3. Materials and Methods

We illustrate the proposed method in the task of disease classification based140

on measured mRNA and miRNA profiles complemented by the interaction net-

work composed of the miRNA-mRNA target relations and mRNA-mRNA inter-

actions corresponding to the interactions between their encoded proteins. Here

we describe the experimental protocol, two particular domains and the resources
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employed for the building of the gene regulatory network used as prior knowl-145

edge. Subsequently, the way in which the ensemble is analyzed to understand

the interactions among features is presented.

3.1. Domain Description

The data, provided by our collaborative lab at the Institute of Hematol-

ogy and Blood Transfusion in Prague, are related to myelodysplastic syndrome150

(MDS) [29]. Illumina miRNA (Human v2 MicroRNA Expression Profiling Kit,

Illumina, San Diego, USA) and mRNA (HumanRef-8 v3 and HumanHT-12

v4 Expression BeadChips, Illumina) expression profiling were used to investi-

gate the effect of lenalidomide treatment on miRNA and mRNA expression in

bone marrow (BM) CD34+ progenitor cells and peripheral blood (PB) CD14+155

monocytes. Quantile normalization was performed independently for both the

expression sets, then the datasets were scaled to have the identical median of

1. The mRNA dataset has 16,666 attributes representing the GE level through

the amount of corresponding mRNA measured, while the miRNA dataset has

1,146 attributes representing the expression level of particular miRNAs. The160

measurements were conducted on 75 samples labeled as follows. The sample

was either healthy, or afflicted. If afflicted, it was further categorized according

to genotype background as a presence of partial deletion of the chromosome 5

(del(5q) or non-del(5q)), and according to the stage of lenalidomide treatment,

i.e. before treatment (BT), or during treatment (DT). Together with 2 types165

of tissue for each of these configurations it adds up to 10 categories. Informed

consent was obtained from all the subjects whose samples were used for expres-

sion profiling, and the study was approved by the Scientific Board and Ethics

Committee of the Institute of Hematology and Blood Transfusion in accordance

with the ethical standards of the Declaration of Helsinki.170

On these categories we defined 7 binary classification tasks with a clear clini-

cal or biological interest. The tasks were to differentiate: 1) healthy samples and

afflicted samples with a particular genotype and treatment stage, 2) treatment

stage of afflicted samples with del(5q), and 3) genotype background (incidence
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of del(5q)) of untreated samples.175

3.2. Regularized Omics Data Classification

To differentiate the data mentioned above we developed new method based

on random forest (RF) framework [30]. The proposed method, Network con-

strained forest (NCF), incorporates domain knowledge in terms of prior known

or predicted interaction between omics features. In the given setting, we work180

mainly with transcriptomic data, employing protein-protein interactions and

miRNA-target interactions as a domain knowledge. This regularization by gene

networks is employed to increase the stability, comprehensibility and, last but

not least, the accuracy of resulting models, namely when treating the usual

n � p settings. The method learns decision trees on those features that lie185

close to the candidate genes in the feature interaction network. This selection

is unlike RF, which uses randomly selected predictors in each decision node.

Instead, the NCF firstly samples a feature as a seed, potentially the candidate

for causing the phenomenon under study, then it samples the rest from a proba-

bilistic distribution over the omics network. The distribution is parametrized to190

certainly prefer selecting the features lying closer the seed gene. The algorithm

of NCF is thoroughly depicted in Sect. 4.2.

3.3. Understanding the model

Random forests are not by far black-box models used solely for prediction.

The ensembles are frequently used for variable importance estimation, feature195

selection or sample proximity evaluation ([31, 32, 33]). However, in the context

of NCFs, variable interactions apparently represent the most interesting piece

of knowledge that can be extracted from the model. In the traditional scenario

that does not involve prior knowledge, the interactions are extracted purely from

the measurements [34, 35]. A pair of variables is considered to interact if a split200

on one variable in a tree makes a split on the other variable either systematically

more possible or less possible. The interactions often serve to improve the bias

in variable selection stemming from variable interaction effects.

8



We deal with the prior set of interactions equivalent to a feature network

when building the weak classifiers. Each tree belonging to the ensemble is205

believed to be local in terms of this feature network, i.e., to contain features

that lie close to the seed gene. For this reason, we may extract the empirical

interactions that correspond to interactions that make edges in the shortest path

connecting a pair of tree neighboring nodes in the prior gene regulatory network.

By searching the whole forest, we find a large number of empirical interactions210

that can be employed in statistical validation of the prior interaction network

under the given biological conditions. The more counts a prior interaction gets

in the empirical phase, the more active it seems to be in the given context. In

other words, we employ the common statistical and data mining formula “data +

prior knowledge→ knowledge”, an interaction is extracted either if it is obvious215

from the measurements themselves or it is contained in the prior interaction set

and not invalidated by the measurements. The prior and posterior empirical

interaction sets can also be compared.

3.4. Validation Domain

As the classification tasks from MDS domain (Sect. 3.1) are mutually de-220

pendent, to validate our method we used a similar omics domain data related to

another genetically determined disease from an independent source. We down-

loaded 17,814 mRNA (Agilent 244K Custom Gene Expression G4502A-07) and

799 miRNA (Agilent Human miRNA Microarray Rel12.0) profiles with match-

ing samples related to ovarian carcinoma (OC) from The Cancer Genome Atlas225

(TCGA) repository [36]. TCGA data encompasses hundreds of heterogeneous

tumor samples with different clinical backgrounds. We choose the OC, which

contains a sufficient number of matching mRNA and miRNA profiles, clinically

well annotated. Hence, we defined two validation data sets with regards to

sample homogeneity in terms of their clinical annotation and balanced class230

distributions. The first data set contains 58 tumor samples of high grade (G3)

and late stage (Stage IV), the latter contains 64 lower grade (G2) tumor sam-

ples. The dichotomized overall survival of respective patients was chosen as a
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target attribute to be learned. The survival dichotomization threshold was set

to the median value of overall survival, i.e. 25 months for high grade tumor235

dataset and 40 months for the lower grade. This preprocessing concludes with

long-term and short-term survival classes, each with 29 samples for the high

grade dataset and with 31 and 33 samples, respectively, for the latter dataset.

3.5. Available Domain Knowledge

Considering domain knowledge, in terms of gene networks, we downloaded240

the interactions between proteins, and genes and miRNAs, from the follow-

ing publicly available databases. In vitro validated miRNA-mRNA interactions

were obtained from TarBase 6.0 [37], while in silico predicted relations were

downloaded from miRWalk database [4]. Protein-protein interactions were ob-

tained from Human Protein Reference Database [38] and from [3], as to the ex-245

perimentally validated and algorithmically predicted interactions, respectively.

Eventually, we ended up with 9,077 genes involved in 79,288 protein-protein

interactions, 463 miRNAs in 92,886 miRNA-target interactions. Regarding the

validation domain, we handled 8,073 genes involved in 81,067 protein-protein

interactions, 417 miRNAs in 84,332 miRNA-target interactions. The candi-250

date causal genes, a total of 145 and 220 genes associated with MDS and OC

respectively, were obtained from [39].

3.6. Experimental Protocol

To validate our method we have extended an implementation of RF in Scikit-

learn [40], a Python machine learning library. Then we run number of robust255

experiments on our NCF. Random forest, standard classification and regression

tree (CART), linear SVM and näıve Bayes (NB) classifier served as benchmark

learners [13]. A simple decision tree was introduced to assess generalization

of forest based algorithms. Each learning algorithm was validated in 5-times

repeated 10-fold stratified cross-validation. Since all the learners should be260

randomly initialized, we ran each of the validation processes from 10 random
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seeds. It comes out to 3 × 10 × 5 × 10 = 1500 learning epochs. Forest based

algorithms were run with 1,024 base trees.

Since we deal with classes of different sizes, we use the Mathews correlation

coefficient (MCC) as a balanced quality measure. It returns a value of between265

-1 and +1; +1 represents a perfect match between annotation and prediction,

0 equals random prediction and 1 indicates absolute disagreement between an-

notation and prediction.

4. Theory

In this section, a theoretical background and motivation for our approach270

is supplied. Firstly, the data and used domain knowledge is formalized to be

further addressed. Since our approach is based on modification of random forest

by omics network, a brief description of random forest learning framework is

provided along with a biological motivation for network incorporation. The

pseudocode of our NCF is also presented.275

4.1. Motivation

Our approach is to modify random forest by gene network regularization.

Random forest [30] is a popular tree-based ensemble model. Its general idea is to

reduce the variance of single deep decision tree classification by voting. The goal

is to create an ensemble of decorrelated but still accurate base tree learners. The280

decorrelation of the base learners is reached by limiting their feature and sample

sets. Namely, the trees are built on a bootstrapped sample set, while the features

are randomly subsampled in each decision node. Finally, decisions of the trees

are merged to adjust variance of the prediction. The diversity among particular

decisions is crucial for the generalization power of the ensemble classifier. Our285

intention is to use prior known interactions between omics features (simplify as

genes) to encourage the diversity of base decisions. The feature subset of a tree

is to be constrained not only by its size (e.g.,
√
p), but also by the existence

and type of interactions between the features. The basic hypothesis claims that
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network-close entities are correlated and henceforth suitable to be grouped in290

the same base learner to decorrelate it from its counterparts.

This intention has an intuitive biological background. A heterogeneous mul-

tifactorial disease is caused by multiple altered loci. The effect of these causal

genes need not be clearly detectable in mRNA abundances of corresponding

genes, but may be observable in the expression of interacting genes. Similarly,295

the effect of translational repression by miRNA may not be observable as de-

creasing target mRNA abundance. In the case of translation inhibition, mRNA

molecule is only partially modified while the amount of respective protein may be

significantly reduced. Henceforth the effect of target inhibition gets detectable

in the expression of interacting genes instead. The individual trees may vaguely300

correspond to the individual disease factors and their network-local manifesta-

tions. The final decision merges the base learners, that can be characterized as

local, stochastic, repetitive and overlapping.

4.2. Network Constrained Forest

Let G = {g1, ..., gpG} be the genes for which expression level (actually the305

transcript abundance) is measured, R =
{
r1, ..., rpµ

}
be miRNAs also with

available expression levels. Let S = {s1, ..., sn}, be the set of samples, where

expression measurements of both G andR are available, with a binary phenotype

P : S → B, Then the expression set is E : S × (G ∪ R) → R. Let IPPI ⊂

G × G represent the previously reported (curated or algorithmically predicted)310

binary interactions between particular genes through respective proteins. Let

Iµ ⊂ R× G represent the binary interactions between particular miRNAs and

their target genes. By merging these units and interactions we define an omics

network N = (V, I) as a directed graph with omics features V = G ∪ R as the

vertices and mutual interactions I = IPPI ∪ Iµ as the edges. Finally, let C ⊂ G315

be the loci (particularly genes in our study) that are believed to be associated

with a disease in terms of genotype (i.e., polymorphisms, mutations).

Our approach, called Network Constrained Forest (NCF), is based on a

simple idea of biasing the feature sampling process towards the genes and loci
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in general, which have been previously reported as candidates for causing the320

phenomenon being studied (typically a disease, treatment outcome, etc.), and

consequently the omics features which directly or indirectly interact with those

candidate genes. The bias is guided by previously known interactions between

the features in a way that those closer to the candidate causal gene in the

network are more likely to be chosen as candidate features in the tree whose325

construction is driven by the particular causal gene as a seed. Unlike random

forest, NCF does not sample the features uniformly. Instead, the features are

sampled from a distribution πc, which is certainly biased towards a potentially

causal gene c ∈ C. The principles of NCF are outlined as a pseudocode in Alg. 1

and 2. Reduction of NCF to RF is sketched in code comments.330

Algorithm 1 Pseudocode of learning NCF as an ensemble.

Input:

Dataset {(xi, yi)}ni=1, where xi ∈ R|G∪R| and yi ∈ B,

Gene network N , seed genes C, number of trees T

Output:

Ensemble forest

1: for all c ∈ C do

2: precompute πc : V → R based on N topology

3: for t← 1 . . . T do . same in RF

4: forest[t] ← buildTree({(xi, yi)}ni=1, {πc}c∈C , C)

The core of NCF lies in the learning of a constrained set of (omics) features

for making decisions in each node of each tree in the ensemble. We will denote

it by F . The distributions πc which F to be sampled from is learned based

on topological properties of network N (see Alg. 1.2). A distribution over the

features V is computed for each potentially causal gene, in general locus, c ∈ C.335

In our study it is most often the set of genes previously reported as phenotype

associated in terms of e.g., nucleotide variations, chromosome deletions. In the

case of missing information, it is a set sampled randomly or in future extensions,

a set implicitly identified during learning of NCF. Such a distribution is required
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Algorithm 2 Pseudocode of learning a base estimator of NCF.

1: function buildTree(D, {πc}c∈C , C)

2: randomly select seed c ∈ C

3: sample features F ⊂ V from πc . in case of RF πc =

√
|V|
|V|

4: node.separator ← g ∈ F best separating D

5: if D are inseparable then

6: return majority class

7: node.left← buildTree({s ∈ D where g is upregulated}, {πc}c∈C , C)

8: node.right← buildTree({s ∈ D where g is downregulated}, {πc}c∈C , C)

9: return node

to be more dense as approaching its seed c. Henceforth, it is implicitly defined340

as a random walk of length k from the seed gene c:

πkc = πk−1c W, (1)

where π0
c (u) = 1 for u = c and π0

c (u) = 0 otherwise, W is the probability

of transition from a vertex u to a vertex v, with Wuv = {deg(u)−1, if uv ∈

IPPI or vu ∈ IPPI or uv ∈ Iµ else 0}, in the feature network extended with the

self transitions, i.e., loops. Note that the gene-miRNA edges are directed. First,345

miRNAs have to be accessible from the causal gene. Second, the edges cannot

be treated as undirected since miRNAs often have a large number of targets

and constitute network hubs; i.e., the high-degree nodes leading to the small

world phenomenon. To minimize the ability of reaching distant network nodes,

miRNAs represent terminal nodes in terms of random walk.350

Resulting distributions πc serve for biased feature sampling within decision

nodes of base trees (see Alg. 2.3). Firstly (Alg. 2.2), a seed gene c ∈ C is

randomly selected. Corresponding distribution πc is then used for weighted

sampling of
√
|V| features (the common RF heuristic) considered to make a

decision (Alg. 2.4). Note that NCF is reducible to RF by making πc uniform355
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depending only on the number of omics features |V|. The last steps are same as

in the standard RF algorithm.

4.3. Learning Assumptions of NCF

In Sect. 4.2, note Alg. 2 that describes the induction of a particular tree.

Let us focus on its steps 2.2 and 2.3. Since each node uses a different seed360

gene c and consequently samples a different feature set F ⊂ G from a different

distribution πc, the tree is forced to span its decisions over the whole network N

and not only to fit the noise of correlated features. Let us explain it as follows.

Behold a multifactorial phenotype defined by two loci L1 and L2, where

the former is more phenotype related than latter, but still imperfectly. It can365

manifest in such a way that L1 gets associated with more samples than the

latter locus, while both cover whole the sample set S. Then assume L1 affects

p1 measurable features which are naturally correlated with each other and with

L1. Similarly, L2 affects p2 measurable features. In case p1 > p2, L1 related

features tend to prevail in the candidate sets of any decision node when uniform370

random sampling is performed. As L1 is more related to the phenotype than

L2, it eventually dominates the decision nodes of any base tree. Thus, a great

portion of trees is biased towards L1 factor and the ensemble lacks diversity.

As L1 is only imperfectly related to the phenotype, the overall classification

performance is not the best possible. This bias will not decrease even with the375

addition of more base trees.

This potential pitfall is addressed by NCF. Following the assumption that

genes that are close in the network are correlated in their expression [41, 42],

NCF samples the features from a certain neighborhood parametrized by the

walk length k. The network guided sampling thus encourages the base trees380

being induced to make decisions according to decorrelated features and to make

decorrelated base predictions as a consequence.

Disagreement among predictions of base learners is the key point in ensemble

learning. Most of the measures evaluating the ensemble diversity before the

validation are based on base classifiers disagreement on certain training samples,385

15



often called critical samples beyond the ensemble margin [43, 44]. When there is

only few examples, the diversity might not be observable within training sample.

Henceforth, NCF manages the diversity implicitly.

4.4. Heuristic Handling of Hyperparameter

One of the key issues is finding the optimal walk length k∗. Short walks390

tend to generate small neighborhoods; the individual trees grow larger to fit the

training data. Long walks get closer to the traditional RFs as the constrained

feature sets become less dependent on the seed and the network topology. Note

that NCF does not fully converge to RF for any walk length as the whole path

starting in the seed is always taken. Instead, it converges to the stationary395

distribution of random walk, i.e. is π∞c (v) = deg(v)/|I|. This means that such

a degenerated NCF samples the features regarding their importance in terms

of their degree, i.e., the number of interconnecting features, without respecting

nature of their interactions including putative correlations.

In this paper we propose a heuristic to set k based on training data only with

no need of e.g. nested cross-validation. The heuristic is based on the theory of

bias-variance trade-off, namely on decreasing incidence of underfitted trees in

the forest with growing walk length. In our case, the walk is stopped one step

before the empirical incidence of underfitted trees I (the percentage of trees that

do not fit the training data perfectly) ceases to decrease or approaches zero:

k∗ = arg min
k=1...10

(I(k + 1) < ε ∨ I(k)− I(k + 1) < ε) (2)

At this length, the neighborhood is large enough to provide sufficient accu-400

racy, yet still small enough not to overfit the training data. The tree depth is

limited to 2 here to avoid perfect fit regardless of the walk length. The value of

ε was set to 1%. The relationship between the walk length and the underfitted

tree incidence is shown in Sect. 5 and Fig. 1. The value of k adjusts the learning

bias to the given problem. Usually, NCF uses fewer features than RF while405

reaching equal or better predictive results.
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5. Results

The results illustrate an empirical evaluation of our method within 9 classifi-

cation tasks. The evaluation is performed in terms of the classification accuracy

plotted in Fig. 1. The graphs depict the progress of an empirical estimate of410

NCF classification accuracy as a function of walk length. Since the walk length

k is a key learning parameter of NCF, we also plot the incidence of underfitted

trees, which serves as a heuristic to assess a proper value of k∗. The MDS and

ovarian cancer class definitions reached through dichotomization are available in

the subfigure legends of Fig. 1. The classes in the individual tasks are encoded415

according to the nomenclature in Sect. 3.1 and Sect. 3.4, respectively.

The accuracy reached with the proper heuristic setting of k∗ (note that it

is not the walk length with the optimistically biased maximum accuracy) is

compared with the other learning algorithms in Tab. 1. The overall picture

can be seen in terms of an average over 9 tasks. As the MCC values reached420

in different tasks can be seen as incomparable, the classification algorithms are

also evaluated in terms of their average ranking. The algorithms are sorted and

ranked according to their MCC scores in each of the tasks (from 1st to 4th)

first, then the average of their ranks is calculated. The lower the rank, the

better the algorithm. Both in Fig. 1 and Tab. 1 only the median of 10 randomly425

seeded runs representing a robust accuracy estimate for each classification task

are shown.

The table illustrates a shift in predictive performance among several learning

methods, starting from the comprehensible but empirically invalid decision tree

through random forest to the accurate though black-box SVM. The results sug-430

gest that our network-enriched RF provides a good trade off between these two

extremes. NCF shows good classification accuracy, while being more compre-

hensible than black-box models (see Sect. 5.1). In most of the cases, NCF has

a better or equal predictive power than the state-of-the-art RF and as a whole,

in terms of classification accuracy, is even competitive with the black-box SVM.435
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Table 1: The comparison of NCF with other classifiers. Median MCC values for 7 MDS

classification tasks and 2 OC tasks. The k∗ values set according to Equation 2 were applied

for NCF. The other classifiers worked with the default settings.

task # Class Ratio NCF RF CART SVM NB

MDS1 5:10 0.64 0.64 0.45 0.60 0.80

MDS2 4:10 0.85 0.58 0.40 1 0.62

MDS3 6:10 1 0.83 0.58 1 0.83

MDS4 4:9 1 0.88 0.16 1 0.49

MDS5 6:11 0.93 60 0.44 1 0.57

MDS6 13:9 0.46 0.63 0.07 0.64 0.23

MDS7 5:11 0.74 0.23 0.13 0.30 0.26

OC1 29:29 0.32 0.24 0.06 0.28 0.20

OC2 31:33 0.49 0.37 0.25 0.36 0.46

Average accuracy 0.71 0.56 0.37 0.69 0.42

Average ranking 1.6 3 5 1.5 3.2

5.1. NCF interaction exploitation

To illustrate the process of NCF understanding, the set of 10 differently

initialized forests constructed for MDS7 was taken. The task is to assess the

impact of treatment in the group of BM del(5q) patients. 107 feature interaction

pairs that appeared 10 and more times were extracted. The core of underlying440

subnetwork is shown in Fig. 2.

For several interaction pairs, their hypothetically calculated relationship or

involvement in MDS and/or leukemia have a solid experimental support in re-

ality. One example with a high score is an interaction pair found in the case

of EGFR–CBL. Whereas CBL, the E3 ubiquitin-protein ligase involved in cell445

signalling and protein ubiquitination, is already known to control the fate of

18



2 4 6 8

1
0

0.5

0.55

0.6

0.65

2 4 6 8

1
0

0.1

0.2

0.3

(a) MDS1 – BM: H vs. A DT

del(5q)

2 4 6 8

1
0

0.6

0.7

0.8

2 4 6 8

1
0

0

2

4

6

·10−2

(b) MDS2 – PB: H vs. A BT

non-del(5q)

2 4 6 8

1
0

0.85

0.9

0.95

1

2 4 6 8

1
0

0

0.1

0.2

(c) MDS3 – BM: H vs. A BT non-

del(5q)

2 4 6 8

1
0

0.8

0.9

1

2 4 6 8

1
0

0

2

4

6

8

·10−2

(d) MDS4 – PB BT: non-

del(5q) vs. del(5q)

2 4 6 8

1
0

0.6

0.8

1

2 4 6 8

1
0

0

0.2

0.4

(e) MDS5 – BM BT: non-del(5q)

vs. del(5q)
2 4 6 8

1
0

0.4

0.5

0.6

2 4 6 8

1
0

0.5

0.6

0.7

0.8

(f) MDS6 – PB del(5q): BT vs.

DT

2 4 6 8

1
0

0.2

0.4

0.6

0.8

2 4 6 8

1
0

0.4

0.6

(g) MDS7 – BM del(5q): BT vs.

DT

2 4 6 8

1
0

0

0.1

0.2

0.3

2 4 6 8

1
0

20

40

(h) OC1 – G3 Stage IV: long- vs.

short-term

2 4 6 8

1
0

0.4

0.45

0.5

2 4 6 8

1
0

20

30

40

50

(i) OC2 – G2: long- vs. short-

term

Figure 1: Experimental results for 7 MDS classification tasks (graph 1a – 1g) and 2 validation

tasks related to the overall survival of ovarian cancer (graph 1h – 1i). The development of

Mathews correlation coefficient (MCC) (in red, the left y-axis) and the incidence of underfitted

trees (in blue, the right y-axis) with increasing walk length (the x-axis). The MCC values of

benchmarking RFs (that do not work with the walk length) are shown in dotted lines.

EGRF (epidermal growth factor receptor) ([45]), mutations in Cbl gene have

been related to MDS and acute myeloid leukemia (AML) ([46, 47]). Addition-

ally, CBL forms other interesting pairs, e.g., the interaction between CBL and
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ABL1 (Abelson murine leukemia viral oncogene homolog 1) is also well docu-450

mented (e.g., [48]). Abl1 is a proto-oncogene that, activated by t(9;22) translo-

cation, creates a new fusion gene, BCR-ABL which is typically associated not

only with chronic myelogenous leukemia (CML) but also in some cases with

acute lymphoblastic leukemia (ALL) and occasionally with AML ([49]). Still

more pairs contain CBL; from those, at least interactions with CRK, CD2AP455

and AXL were previously reported ([50, 51], respectively), although up to now

they have not been seen as relevant factors in MDS or leukemia.
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Figure 2: Discovered interaction subnetwork visualized in Cytoscape [52]. Oval entities cor-

respond to protein coding genes, the rectangles to miRNA-genes. Black edges correspond to

the interactions of respective proteins and red inhibitory edges to the interactions between

miRNA and mRNA of inhibited gene. The black entities refer to genes and miRNAs respec-

tively, reported in the text.
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Another important high-score hit is NPM1–RAD50. Besides functioning

as DNA-repair proteins found to be deregulated together in ovarian cancer

([53]), NPM1 (nucleophosmin) is known to be involved in AML, MDS, and460

acute promyelocytic leukemia ([54]). Interestingly, RAD50, as a DNA-repair

protein, is also a potential factor in the etiology of AML and possibly MDS

([55]).

Besides the aforementioned genes, interaction pairs involve other genes, e.g.,

KRAS, JAK3, STAT3, and SYK, whose occurrence in MDS is known and under465

further investigation (for an overview, see [39]). Somewhat surprisingly, within

the interactions there are only several hits for miRNA-coding genes previously

reported as deregulated in MDS (e.g. miR-124, miR-329, miR-355 and miR-155)

(reviewed in [56]). The other miRNA listed in interactions could then possibly

represent new targets to which we should turn our attention considering MDS,470

i.e. miR-495 which has previously been associated with acute myeloid leukemia

with mixed lineage leukemia rearrangements [57] but not with MDS.

To sum up, 36 out of 107 (33 %) high-scoring interaction pairs contain a

gene (or the whole pair) whose (more or less significant) relationship to MDS

has already been reported [39]. Such an occurrence is far from random and is475

obviously the result of a successful computational approach. Therefore, some

of the interactions (or interacting counterparts) could turn out to be promis-

ing candidates for further investigation for their role in MDS and/or leukemia

through both a literature search as well as laboratory experiments.

6. Discussion480

In order to gain a deeper insight into the mechanism of NCF with respect

to its predictive performance, in Fig. 1 the relationship between the empiri-

cal estimate of generalization error, walk length as a regularization parameter,

and incidence of underfitted trees used to set a heuristic value of the param-

eter can be observed. This relationship shows a few consistent patterns. In485

MDS1 (Fig. 1a) a prematurely converging heuristic can be observed. This most
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probably leads to underfitting of the model, which leads to the stagnation of

predictive accuracy close to the baseline represented as a performance of RF.

The mutually related tasks MDS2 and MDS4 (Fig. 1b and 1d), which share the

definition of one the classification classes, show the heuristic falling to zero; at490

the same time, the initially promising value of MCC is reduced. Such a trend

suggests overfitting, most probably due to the small sample size of the shared

class, which contains only 4 samples (see Tab. 1). Conversely, stable good clas-

sification performance is manifested within another two mutually related tasks

MDS3 and MDS5 (Fig. 1c and 1e). Very interesting results are shown in task495

MDS7, which manifest a slow decrease of the heuristic and attendant growth

of the accuracy far above the baseline. As to the OC tasks which are obviously

more complex due to the larger number of samples (see Tab. 1), NCF, under

the proper parametrization, beats standard RF and even the black-box SVM.

As to the heuristic settings of the walk length parameter k, it can be stated that500

the heuristic finds the values of generalization error very close to their optima.

To understand how particular types of domain knowledge influence the NCF

predictive performance, we ran several additional experiments. The experiments

were run under the same protocol as defined in Sect. 3.6 and the results were

aggregated in Tab. 2. Particularly, the NCF was run with seed genes randomly505

drawn to study the direct influence of the candidate causal genes (see Tab. 2,

NCF-Complete vs. NCF-RandSeed). Next, protein-protein interactions only

were submitted to NCF to assess the influence of miRNA-target interactions

and miRNA inhibitory mechanisms in general (NCF-Complete vs. NCF-PPI in

Tab. 2). The results suggest that prior candidate gene selection itself slightly510

improves the NCF performance. The candidate causal genes help to focus to-

wards the prospective regions of the feature network in tasks with the small

sample mRNA and miRNA profiles. The knowledge of miRNA profiles and

miRNA-target interactions have indisputable positive effect on the NCF per-

formance. The latter observation may suggest that intelligent integration of515

miRNA features to the model has a positive impact on its validity. Similarly to

the performance relationship between NCF and RF discussed in Sect. 5, NCF
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based on mRNA profiles and protein-protein interactions only outperforms its

RF counterpart based on mRNA profiles only (NCF-PPI vs. RF-mRNA in

Tab. 2).520

Table 2: The influence of the individual ingredients of NCF on its predictive performance.

Median MCC values for 7 MDS classification tasks and 2 OC tasks. The influence of seed genes

and miRNA-target interactions, respectively, on the predictive validity under the heuristic

settings of k∗.

Task Name
NCF RF

Complete RandSeed PPI Merged mRNA

MDS1 0.64 0.60 0.58 0.64 0.40

MDS2 0.85 0.7 0.90 0.58 0.43

MDS3 1 1 0.83 0.83 0.37

MDS4 1 1 0.90 0.88 0.42

MDS5 0.93 0.95 0.63 0.60 0.49

MDS6 0.46 0.44 0.67 0.63 0.51

MDS7 0.74 0.72 0.31 0.23 0.45

OC1 0.32 0.30 0.29 0.24 0.22

OC2 0.49 0.34 0.47 0.37 0.35

Average 0.71 0.67 0.62 0.56 0.40

Rank 1.5 2.5 2.5 3.2 4.4

7. Conclusion and Future Work

We propose a general parameter-free method for learning from high-dimensional

and low-sample size data complemented by a feature interaction network. The

method of network-constrained forest stems from the well-known random forests.
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The main difference is that decorrelation of the individual weak classifiers is not525

reached through bootstrap sampling and random subsetting of the features, but

pseudorandom subsetting driven by the feature interaction network. The in-

dividual trees deal with feature sets sampled from different areas of a feature

network, the curated feature interactions thus tend to be promoted. Still, they

are not strictly imposed; the method remains stochastic in its nature and an530

arbitrary feature relationship may appear in a tree. The probability of its oc-

currence increases with the decreasing path length between the pair of features

in the network and increasing interaction observed in measurements. Unlike our

previous efforts, we do not rely on feature extraction based on prior modules

such as pathways or simple interaction subgraphs [58, 59, 9].535

The method was applied to improve classification accuracy and comprehen-

sibility of gene expression-based disease models. The obtained results suggest

that introducing domain knowledge improves the accuracy of the forest and in-

creases its compliance with the current knowledge. We believe that the method

is able to benefit from stochastic identification of the subset of earlier reported540

general interactions; this subset manifests in the given context.

In future work, we will aim at truly omics experiments. We will employ

more data types such as epigenetic data, namely DNA methylation arrays, and

further extend utilized prior knowledge; for example, with information about

transcription factor interactions and problem related pathways. At the mo-545

ment, the main limitation lies in the simplifying assumption of measurement

completeness; all the measurements must be available for all the samples, which

is often not the case. Some patient mRNA profiles may missing, even though

protein levels might be available for them, etc. The authors of [60, 61] demon-

strate that feature networks represent a suitable regularization tool in other550

domains, as well; such as document topic prediction and click prediction. Even-

tually, we plan to proceed further beyond classification, namely to analyze the

resulting forest. To be more precise, an analysis of successful trees in terms

of gene ontology terms could be provided. Dealing with artificially generated

data should answer the general applicability of the given method. The analysis555
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should also work with different ratios of n and p (as the number of samples

grows the methods such as sparse SVM seem to be natural competitors [62], at

least in terms of accuracy) and feature network sizes and topologies as well as

feature interaction strengths (the stronger the curated interactions manifest in

the measurements, the more prior knowledge applies to the given domain but560

it is easier to be identified from the measurements themselves).
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