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Abstract. Automated extraction of links among biological entities from
free biological texts has proven to be a difficult task. In this paper we pro-
pose and solve a modified task in which we extract the links from short
textual gene summaries collected automatically from NCBI website. The
main simplification lies in the fact that each summary is unambiguously
attached to a single gene. The agent part of binary biological interactions
is thus known by default, the goal is to identify meaningful target parts
from the summary. The outcome is a structured representation of each
summary that can be used as background knowledge in consequent min-
ing of gene expression data. As the gene summaries highly interact with
the other structural information resources provided by NCBI website,
these resources can be used as an annotation tool and/or a feedback for
performance optimization of the system being developed. In particular
we use the gene ontology terms in order to evaluate and improve the
information extraction process.
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1 Introduction

As availability of textual information related to biology increases, research on in-
formation extraction (IE) is rapidly becoming an essential component of various
bio-applications. It is expected that text mining in general, and IE in particu-
lar, will provide tools to facilitate the annotation of a large amount of genetic
information, including gene sequences, transcription profiles and biological path-
ways. The biological function of cells, tissues and organisms can be understood
by examination of interactions among proteins or between DNA and proteins.

The main interest has been devoted to MedLine abstracts, however there is
also a vast effort to exploit full-text journal articles [20]. Applying IE to genomics
and more generally to biology is not an easy task because IE systems require
deep analysis methods to extract the relevant pieces of information. That is why
we propose a modified task in which we extract the links from short textual gene
summaries collected automatically from NCBI website. The main simplification
lies in the fact that each summary is unambiguously attached to a single gene.
The agent part of binary biological interactions is thus known by default, the
goal is to identify meaningful target parts from the summary.



This work has started with the intention to develop a meaningful measure of
interaction inside a closed set of genes in order to support consequent mining of
gene expression data. Such a measure can be used in many ways. The measure
can complement the gene distance measure based immediately on the expression
data when the genes are clustered [15]. It can be used to select biologically
meaningful patterns from the overwhelming pattern sets that technically appear
in the expression data [17] or it can help in feature extraction and selection when
a classification task is solved [24].

Public databases contain vast amount of rich data that can be used to create
and evaluate both direct and indirect interactions among biological entities. Of
course, the most straightforward way is to utilize the structured information
such as gene ontology (GO) or Entrez’s link files. The rationale sustaining the
GO based measure is that the more GO terms the genes share, and the more
specific the terms are, the more likely the genes are to be functionally related.
[19] defines a distance based on the Czekanowski-Dice formula, the methodology
is implemented within the GOProxy tool of GOToolBox [1]. [22] uses Entrez’s
link files in order to create a general entity graph. The authors also provide a
measure that assesses the strength of a link between an arbitrary pair of vertices.

Nevertheless, the structured databases can hardly summarize all the available
knowledge and text mining outcomes can reasonably complement the informa-
tion gained from the knowledge sources mentioned in the previous paragraph.
Tagging gene and protein names in free biomedical text has proven to be a dif-
ficult task [23]. Automated extraction of direct links among biological entities
is even more difficult [10]. In this paper we restrict to a corpus of gene textual
summaries. Possible interaction among a closed set of genes is studied indirectly.
The main aim of the paper is to develop a structured and tagged representation
of gene summaries. This structured representation can later serve to assume on
interaction or similarity among the genes from multiple points of view. The pro-
posed structured representation also seems to be promising with respect to its
further generalization. The developed system provides an insight into relations
among biological entities and it can be adjusted to extract arbitrary interactions
among biological entities from abstracts or whole texts.

This paper is structured as follows. Section 2 briefly introduces the data we
worked with. Section 3 gives an overview of related methods. Section 4 describes
a tool LinguaStream that we have used, discusses the developed extraction rules
and gives examples of real outputs. Section 5 provides two ways of evaluation —
the first is based on a limited corpus of human annotated summaries, the second
evaluates the full corpus with respect to GO terms.

2 Entrez Gene Summaries

Entrez Gene is the gene-specific database at the National Center for Biotechnol-
ogy Information (NCBI), a division of the National Library of Medicine (NLM).
Entrez Gene provides unique integer identifiers for genes and other loci for a
subset of model organisms. It tracks those identifiers, and is integrated with
the Entrez system for interactive query, LinkOuts, and access by E-utilities [25].



The information that is maintained includes nomenclature, chromosomal local-
ization, gene products and their attributes (e.g. protein interactions), associated
markers, phenotypes, interactions, and a wealth of links to citations, sequences,
variation details, maps, expression reports, homologs, protein domain content
and external databases.

As mentioned in Section 1 the long term goal is to develop a meaningful
measure of interaction inside a closed set of genes. In our experiments we deal
with the SAGE human gene expression dataset downloaded from [4]. Only the
unambiguous tags (corresponding to genes) identified with RefSeq were selected,
leaving a set of 11082 tags (expressed in 207 biological situations).

To access the gene annotation data for every tag considered, RefSeq identifiers
were translated into EntrezGene identifiers [3]. The mapping approached 1 to
1 relationship. There were only 11 unidentified RefSeqs, 24 RefSeqs mapped
to more than 1 id and 203 ids still appeared more than once. Knowing the
gene identifiers, the annotations were automatically accessed through hypertext
queries to the Entrez Gene database [4] and sequentially parsed by the method
stemming from [28]. The non-trivial textual records were obtained for 6,302 ids
which makes 58% of the total amount of 10,858 unique ids. 3,926 genes had a
short summary, 5,109 had one abstract attached at least. 6,824 genes had at
least a single GO term attached, which makes 63% of the total amount of genes.

3 Information Extraction and Methodology

Many approaches have been proposed for extraction of biological information
from scientific texts. These approaches can be classified into two broad categories
[8]: machine learning based and linguistic analysis based. That is the latter one,
and more precisely IE technique, which is used in this paper. Some of the IE
systems use similar approaches with the Natural Language Processing (NLP)
understanding systems of the seventies/eighties and IE is often seen as a NLP
understanding system. In fact, they do not share the same goal. IE aims at
extracting very precise information from a restricted domain while the goal of
the NLP systems was the whole understanding of all aspects of the text. For
this purpose, extensive knowledge and linguistic resources were needed, and deep
analysis was necessary (syntactic, semantic and pragmatic analysis).

Taking advantage of the restricted domain, some biomedical IE systems adopt
this NLP based architecture [11, 14]. Nevertheless, the syntactic analysis still re-
mains a difficult task. Actually the accuracy of the complete parsing can be
estimated roughly about 50% of the analysed sentences (see [11]). Other works
attempt to use “shallow parsing”, a robust method, although less precise perform-
ing a partial decomposition of a sentence structure to identify phrasal chunks or
entities of interest and relations between these entities. Generally, these kinds
of systems are designed for extracting protein-protein relations, such as protein-
location relations, binding relations, gene-gene interactions, etc. [21]. A common
point of the IE systems is that they utilize resources, biological databases, on-
tologies, such as UMLS, LocusLink ...



Some other papers are devoted to a preliminary task: the recognition of
gene/protein names and families. Difficulties are well known: multi-sense words,
no formal criterion, multi-word terms, variations in gene/protein names. Differ-
ent NLP methods are used for this like rule-based approach [12], or/and dictio-
nary/knowledge approach [16, 18].

Our system differs from the approaches previously mentioned in several ways.
For example, [14] carries out a terminological parsing, using a biological knowl-
edge database, syntactic, semantic and discoursive analysis, using a domain
model (ontology) to get a predicate argument representation and to fill an ex-
traction template. Instead of those kinds of classical NLP techniques, we design
simple declarative extraction rules, making the implementation process “light
and quick”. Let us note that they are domain-specific, but by no means corpus-
specific. One of the aims is to reach similar results as the “heavy” methods
published in the literature.

The design of the rules can be seen as a simplification of the “contextual
exploration method” [26]. This approach aims at locating contexts in a corpus
(i.e., linguistic indicators) from which some rules for identifying relevant textual
segments are triggered. For example, linguistic indicators as “our conclusion”,
“consequently” or “so” found in a corpus can allow the extraction of conclusive
sentences. That is the idea of our system: triggering extraction rules only if a
context is located while avoiding the whole-corpus analysis. Another similarity
with our work is that no syntactic analysis is processed. However, unlike our
approach, this method is domain-independent, so linguistic indicators and ex-
tracted informations are general (causality, thematic announcement, conclusive
sentences, ... ).

Another important point is that our method is endogenous: no resources such
as knowledge base or dictionary are needed at the beginning. The resources are
constructed on the fly — the system learns new terms (which can be new terms
in the domain or missing in the databases) to be used later or in other biological
corpora and/or in other text mining applications.

Finally, our system is not designed to focus only on a specific aspect of
gene/protein description but it is designed to identify protein/family /name and
general biological function about the gene/protein involved. Actually four types
of information are distinguished and annotated in the corpus: gene/protein name,
family name, location and biological function.

4 Method

The presented approach consists in definition of extraction rules, and has been
implemented using the LinguaStream platform.

4.1 LinguaStream

LinguaStream [2, 7] is an integrated experimental environment targeted to NLP
researchers. It allows complex experiments on corpora to be realised conveniently,
using various declarative formalisms.
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Fig. 1. Processing stream of the implemented rules in LinguaStream.

Its integrated environment allows processing streams to be assembled visually
(see Figure 1), picking individual components from a "palette". Some compo-
nents are specifically targeted to NLP, while others solve various issues related
to document engineering (especially to XML processing). Annotations made on
a single document are organized in independent layers and may overlap. Thus,
concurrent and ambiguous annotations may be represented in order to be solved
afterwards, by subsequent analysers. The platform is systematically based on
XML recommendations and tools, and is able to process any file in this format
while preserving its original structure. When running a processing stream, the
platform takes care of the scheduling of sub-tasks, and various tools allow the
results to be visualised conveniently.

IE from a raw text is composed of tokenization, POS tagging (using TreeTag-
ger [5]), extraction and output generation which adds the final XML wrapper.
Among fundamental principles, the platform allows the declarative repre-
sentations to be used. Furthermore, the modularity of processing streams
promotes the reusability of components in various contexts: a given module,
developed for a first processing stream may be used in other ones. Section 4.2
demonstrates their utility.

4.2 Extraction rules

We have defined a set of rules to identify, extract and annotate relevant multi-
word terms from gene summaries. The results are given in a form of XML file
containing the whole text where the recognized areas are highlighted and click-
able (see Figure 2), and another XML file with the extracted information only
(see Figure 3). Let us refer to these files as the interactive and extracted output.
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Fig. 2. Example of XML result.

The rule definition is decomposed into the following steps:

— Observe the corpus (in fact the training corpus) in order to get regularities
and identify some contexts. For example, the expression “this gene encodes
the X protein” has numerous occurrences in the corpus, so “encode” is a good
context — a trigger word — to identify a protein name;

— Design rules from the contexts previously identified (a particular example is
shown later).

— Implement the rules. It is a straightforward process using DCG Prolog and
unification on feature structures thanks to GULP [9].

— Review the results after processing the rules and backtrack if necessary. This
can be changing rules, or adding rules while possibly reusing the terms/knowledge
already recognized /learned.

We have defined 4 sets of rules allowing the system to recognize 4 types of
information: protein names, family names of proteins, roles / biological functions
(including diseases, interactions, ... ), and location (components, ... ).

General structure of the rules We do not use patterns in the sense of the
IE, that is without an a priori on the form of the expressions. Figure 4 presents
the structure of the rules. From a “context”’, an expression (generally a multi-
word term, a nominal phrase) is recognized until a stop phrase is encountered.
The context is a set of “trigger” words. The stop phrases can be words, symbols,
verbs, punctuation, .... They depend on the rule type.



<gene>

<id>10</id>

<name>NAT2</name>

<protein>encodes N-acetyltransferase 2 (arylamine N-acetyltransferase 2)</protein>
<role>associated with higher incidences of cancer and drug toxicity</role>
</gene>

<gene>

<id>176</id>

<name>AGC1 SEDK CSPG1 MSK16</name>

<protein>Aggrecan 1 is a</protein>

<family>member of the aggrecan/versican proteoglycan</family>
<role>involved in skeletal dysplasia and spinal degeneration</role>
</gene>

Fig. 3. The extracted results.
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Fig. 4. Structure of the rules.

Let us take an example. The term “encodes N-acetyltransferase 2 (arylamine
N-acetyltransferase 2).” is extracted by using the following set of rules:

protein(type:pro..name:N) --> @lemma:encode, np(N).

np(N) --> Qtag:dt, namepro(N).

np(N) --> namepro(N).

namepro(N) --> 1s_token(N,_), end.

namepro(N) --> 1s_token(N,_), namepro(N2), {concat(N1,N2,N)}.
end --> punctuation ; verb ; relative_pronoun ; trigger_word.

In this example, “namepro” stands for the name of the protein to be ex-
tracted, “Is_token” a terminal symbol (a token), “end” the indicator for cutting
out the recognition of a multi-word term. The trigger phrase is “encode” (i.e.,
also encoded, encodes atc.). Let us remark that “dt” corresponds to a possi-
ble determiner just before the name of the protein. The rules “namepro” allow
the system to recognize the multi-word terms. The end phrase is a punctuation
symbol here.

Context and stop phrases Currently, the identification of the context has
been done manually, however an automatic learning of the context can also be
considered. We have manually detected special phrases for each type of infor-
mation (proteins, families, ...) on an excerpt of the corpus. We have noted the
corresponding trigger words and the stop phrases. Table 1 presents some exam-
ples of trigger phrases for each type. The common stop phrases are the trigger
words, some punctuation symbols and the relative pronouns.

The final rulebase consists of 186 rules — 74 for proteins, 46 for families, 27
for roles, 39 for locations.

Special processing Another set of rules benefits from the reusability prin-
ciple of LinguaStream. It enables us to use the information (tokens, trigger



phrases, . ..) recognized earlier within the current processing stream. Some pro-
tein names/families are recognized using entities already identified. These en-
tities are considered as lexical units (tokens) in the rules. For instance, “X are
class of FAMILY” where FAMILY is the entity previously recognized as a protein
family, and X is the new extracted information: here an other protein family.

A special process for recognizing protein names expressed by an acronym
is done. All acronyms are marked by a few special rules that extract words
with upper cases, numerical figures and/or special symbols as in [12]. Then,
the acronym context is used to decide whether the acronym corresponds to a
protein name. For example, “protein CEBP-alpha” is detected using these specific
rules. Here the rule is: the word “protein” followed by an acronym. We also use
particular rules to filter out false or misleading expressions. For instance, the
term “the secreted protein” must not be extracted as a protein name.

. |encodes an ... @lemma:encode, Qtag:dt

proteins the product of this gene is ... |@lemma:product, $’of’, $’this’, $'gene’, @lemma:be
families belongs to the ... @lemmaz:belong, $’to’

is a member of the ... @lemma:member, $of’

an important role in . .. $'role’, $’in’

roles is involved in ... $involved’, $’in’

locations found in ... $’found’, $’in’

Tocated in ... $located’, $’in’

Table 1. Examples of detected contexts.

4.3 Outcome

The corpus is about 2.33MB and contains 64,308 lines. There are 10,858 genes.
In order to learn the contexts and the stop phrases, we have looked over 200
genes (1.8% of the corpus).

Type [No. text areas
proteins 3,058
families 3,056

roles 4,303
locations 1,023

Table 2. The number of recognized terms (text areas) according to their type.

The number of marked text areas (i.e., multi-word terms or pieces of ex-
tracted information) is presented in Table 2. Let us note that in a gene summary,
the information about proteins, families, ...is not always present. We observe
that the number of “roles” is larger than the number of “proteins”. As a matter
of fact, a single gene may have several “roles” because the type role contains
biological functions, diseases and also different interactions. As regards families,
we capture families and also subfamilies and superfamilies, if they are indicated.

The system has recognized 3,058 protein names. By rule of thumb, this is a
relatively good result since there are 6,932 genes without summaries (i.e. without
any chance to extract information). On average, there is nearly one protein name



extracted per existing summary. A more detailed evaluation of the performance
is given in the next Section.

5 Ewvaluation

Two types of experiments have been carried out. First, we have evaluated the
precision and the recall of the method using an excerpt of the data. The second
experiment is a direct comparison between our extracted terms and the GO
terms annotating the individual genes.

5.1 Evaluation on a human annotated corpus

We have evaluated our approach using 100 genes (and the corresponding sum-
maries) randomly chosen. This excerpt has been annotated by two local experts
to form the reference. We have computed the classical measures of precision and
recall [8] to assess the performance of our system.

Table 3 presents the results and relates them to the results obtained by
other existing methods published in literature. The comparison is illustrative
only as the methods were not applied to the same corpus. The precision and
recall values cannot be compared directly, but they may give an estimation of
the performance. As we can see, the results of our system are comparable to the
existing scores, without using a “heavy method” nor resources.

method recall |precision

existing methods: [12, 18, 13, 27]|73-99%| 73-95%

our approach: proteins 73,6% | 78,8%
families 71,6% | 93,4%

Table 3. Results.

Distinguishing various term types, a good precision and recall has been
reached for families. Actually, for the family names and the locations, the imple-
mented rules are appropriate to extract information from summaries. Moreover,
we have recently improved the rules by using the results of this evaluation and
by observing the information not recognized to define new contexts.

As for biological functions, the important point is to have a relatively com-
plete list of the commonly used verbs. Our “list” is good enough, and it is easy
to add new verbs to capture more cases. For this, ideas from specific works like
[6] can be used.

The main problem concerns the recognition of proteins names. The current
rules are able to capture the majority of the names, however some particular lin-
guistic problems are not treated yet: anaphoras and coordination. For instance, in
the phrase “the related proteins CEBP-alpha, CEBP-delta, and CEBP-gamma”
all the three acronyms are recognized but only the first one (“CEBP-alpha”) is
identified as a protein name (the rule given above). The others would need to
take the coordination problem into account.



5.2 Comparison with GO

A great part of GO terms associated with genes also appear in their summaries.
In other words, if a gene is annotated with a GO term, this term (or its seman-
tically equivalent phrase) often appears in the summary of the given gene too.
This significant overlap between GO terms and summaries gives us a chance to
utilize GO terms as an annotation tool for gene summaries. The quality of infor-
mation extraction can be tested with respect to recall of the known GO terms.
The main advantage of such an experiment is that it enables us to automatically
evaluate the system over whole the corpus of gene summaries.

The basic assumption of this evaluation is that all the GO terms represent
meaningful terms to be extracted. Then, the recall is estimated as the ratio be-
tween the number of GO terms identified within the extracted XML annotation
and the number of GO terms that appear within the original summaries. The
ideal case occurs when all the GO terms that appear within the gene summary
of the given gene remain also in its XML record — recall would be 1 here.

The main and difficult problem is to identify the GO terms within free text
of gene summaries. First, let us see what is the percentage of GO terms that
appear in gene summaries immediately — as exactly the same term or phrase.
The simple search for substrings suggests that only 7% of GO terms associated
with the given gene co-appear in its summary immediately. These are mainly
one word terms since for longer phrases the exact match is less likely — e.g., the
GO term "amino acid metabolism" appears in the summary as an expression
"function in the catabolism and salvage of acylated amino acids". That is why
we have also applied a simple form of approximate match for longer phrases.
If at least one of the stemmed words from the GO phrase appears in the gene
summary exactly, we search for an approximate match of the other words in the
same summary sentence. We use the bigram approximate string comparison for
this purpose. The phrase is found if and only if the average of best-match values
— we search for the nearest counterpart for all the words from the GO phrase —
reaches a certain threshold. This simple approximate match reveals that 18% of
GO terms associated with the given gene co-appear in the respective summary.

matching |original summaries|extracted XML recall
exact 7% 3.9% 56%
approximate 18% 8.2% 46%
Table 4. Recall of GO terms — the exact and approximate match.

Table 4 gives an overview of the recall for exact and approximate GO terms.
Precision of the IE cannot be revealed in this way as we do not search for
GO terms only. Let us remind that we are interested in any biological terms
and the goal is not to confine ourselves to the limited dictionary of GO terms.
Nevertheless, the recall presented in Table 4 should be evaluated with respect to
the condensation that the extraction process brings. The content of the extracted
output makes 29.2% of the content of the original gene summary files. It also
has to be considered that the sentences in gene summaries can be quite long
while the extracted tags are quite compact. The chance that the GO phrase is
scattered by tag tokens is thus increased.



6 Conclusion

In this paper, we presented an original approach for extracting and exploiting
information from biological domain. The approach gives promising results on
a specific but wide corpus. It is suitable for extracting biological information
as well as to acquire knowledge. It also seems to be promising with respect
to its further generalization. The developed grammar provides an insight into
relations among biological entities and it can be adjusted to extract arbitrary
interactions among biological entities from abstracts or whole texts using the
acquired information such as terminological resources. The second investigation
will consist in enhancing the grammar by an automated learning of context [6].
The process has not been designed yet but the terms already learned can guide
and accelerate the learning process (to annotate the other corpus, etc.).

Another work is to propose and test a gene similarity measure based on the
developed structured representation. While the measure itself is more or less
obvious — the more overlap two genes show in their corresponding type fields
the more they interact — the main effort will be to show a possible difference in
comparison with the measures that are immediately based on the GO annota-
tions [19] or a vector representation of whole summaries [17].
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