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Abstract. In this work we integrate conventional mRNA expression
profiles with miRNA expressions using the knowledge of their validated
or predicted interactions in order to improve class prediction in geneti-
cally determined diseases. The raw mRNA and miRNA expression fea-
tures become enriched or replaced by new aggregated features that model
the mRNA-miRNA interaction. The proposed subtractive integration
method is directly motivated by the inhibition/degradation models of
gene expression regulation. The method aggregates mRNA and miRNA
expressions by subtracting a proportion of miRNA expression values from
their respective target mRNAs. Further, its modification based on sin-
gular value decomposition that enables different subtractive weights for
different miRNAs is introduced. Both the methods are used to model
the outcome or development of myelodysplastic syndrome, a blood cell
production disease often progressing to leukemia. The reached results
demonstrate that the integration improves classification performance
when dealing with mRNA and miRNA features of comparable signifi-
cance. The proposed methods are available as a part of the web tool
miXGENE.
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1 Introduction

Onset and progression of myelodysplastic syndrome, like other genetically de-
termined diseases, depend on the overall activity of copious genes during their
expression process. Current progress in high-throughput technologies as RNA
microarrays [2] and RNA sequencing [21] enables to measure the expression of
myriads genes in parallel, which leads to an expansion of wide scale genomic
data. Inferring phenotype patterns by the means of machine learning and statis-
tical analysis from such kind of data is natural learning task [9]. However, many



natural learning tasks, such as disease type classification or treatment response
prediction, become non-trivial due to small sample size in comparison with huge
number of samples, which causes overfitting and consequently low validity of
resulting models.

However, gene expression GE is a complex process with multiple phases, com-
ponents, and regulatory mechanisms. Gene expression is the overall process of
migrating information from genome towards anatomical and physiological signs,
which are generally called phenotype. During the process, a gene is firstly tran-
scribed into the molecule of messenger RNA (mRNA), then subjected to several
transcription and translational regulatory mechanisms, and eventually trans-
lated into protein. The final protein amount and composition strongly afflicts
structural and functional cell properties which in together determine the pheno-
type. Significant dysfunction during this process may easily cause a disease. A
simplified scheme of gene expression as a whole is sketched in Fig. 1.

Fig. 1. Scheme of molecular processes and particular stages of gene expression system.
The components assumed to be affordably measured at a large scale are in bold.

Unlike trancriptome level which is possible to be affordably measured by
mentioned high-throughput technologies, further components of gene expression
system as proteome level, which are closely related to phenotype, are still quite
difficult to capture. Reflecting this issue, current trends in genomic data analysis
aims towards sensing GE at certain points of these phases and integrating the
measurements with the aid of recent knowledge about subduing mechanisms [8].



Such an approach may show the GE process in a broader, systematic view, and
make the analysis comprehensible, robust and potentially more accurate.

The goal of our work is to integrate conventional GE data sources as mRNA
profiles with microRNA measurements and to experimentally evaluate the merit
of using the integrated data for class prediction. MicroRNAs (miRNAs) [18] serve
as one component of complex machinery which eukaryotic organisms use to reg-
ulate gene expression and protein synthesis. Since their discovery, miRNA have
shown to play crucial role in development and various pathologies [3, 25]. They
are short (arround 21 nucleotides) noncoding RNA sequences which mediate
post-transcriptional repression of mRNA via multiprotein complex called RISC
complex (RNA-induced silencing complex) where miRNA serve as a template
for recognizing complementary mRNA. The complementarity of miRNA-mRNA
binding initiates one of the two possible mechanisms: the complete homology
triggers entire degradation of target mRNA molecule, whereas a partial com-
plementarity leads to inhibition of further translation of target mRNA, when
the mRNA molecule itself is preserved. However, despite the progress in un-
derstanding the underlying mechanisms in recent years, the effects of miRNA
on gene expression is still a developing field and many important facts about
mechanism of action and possible interactions remain still unclear [7]. The level
of expression of particular miRNAs can be measured for example by miRNA
microarrays, analogically to well-known mRNA profiling. The resulting dataset,
called the miRNA expression profile, contains, similarly to mRNA profiles, tissue
samples as data instances; only this time the attributes are individual miRNA
sequences. Integrating mRNA and miRNA data sources may provide a better
picture about the true protein amount synthesized according to respective genes,
regarding the mechanisms of disease occurrence.

We propose integration stemming from the knowledge which miRNA tar-
gets which mRNA. Target prediction is a topic of active research [28]. The most
reliable form of target prediction is experimental in vitro validation. Complemen-
tary in silico target prediction offers more miRNA targets with a higher false
detection rate. The predictive algorithms either work based directly on molecular
biological theory, building the relationship based on miRNA/mRNA structure
and properties [19, 5], or be data-driven; i.e., determining targets empirically
using statistical or machine learning methods on as much data as possible [31,
16]. As an example of algorithms of the first class we should mention miRanda,
as an extension of the Smith-Waterman algorithm [26], miRWalk [5] and Tar-
getScan [19]; as to those of the second class refer to miRTarget2 [31] or PicTar
5 [16]. Target prediction algorithms usually output a score, which for a partic-
ular mRNA and a particular miRNA quantifies the strength of the belief that
the two are truly related. While there is no guarantee that the results are truly
correct, employing prediction algorithms on already existing gene/miRNA ex-
pression profiles is cheap and, with the possibility of thresholding the score, one
can express confidence in the results, possibly eliminating fluke results.

Despite the above-mentioned problems in target prediction, the main chal-
lenge in mRNA and miRNA data integration is different. The relationship be-



tween miRNAs and mRNAs is many-to-many, a miRNA binds to different mR-
NAs, while an mRNA molecule hosts binding sites for different miRNAs. More-
over, the binding can be, and often is, imperfect; with a miRNA binding only
partly to its target site. One miRNA can, in addition, potentially bind to multiple
locations on one mRNA. Due to all of these aspects and the fact that the mRNA-
miRNA interaction itself is far from being fully understood, mRNA-miRNA data
integration is a non-trivial task. Simply merging mRNA and miRNA probesets
[17] may increase current difficulties in GE classification, such as overfitting
caused by the immense number of features. Hence, a smart method of reason-
able integrating miRNA and mRNA features is desired.

The authors of [12] present an interesting tool for inferring a disease spe-
cific miRNA-gene regulatory network based on prior knowledge and user data
(miRNA and mRNA profiles). However, this approach does not address the
method of breaking down the large inferred network into smaller regulatory
units, which are essential for subsequent classification. The method of data spe-
cific identification of miRNA-gene regulatory modules is proposed in [22] and
[29], where the modules are searched as maximal bi-cliques or induced as de-
cision rules respectively. But none of these methods offer an intuitive way to
express the identified modules within the sample set. Contrariwise, [14] pro-
vides a black box integration procedure for several data sources like mRNAs,
miRNAs, methylation data etc., with an immediate classification output. Never-
theless, this method contains no natural interpretation of the learned predictive
models, which is unsuitable for an expert decision-making tool.

In this work, we propose a novel feature extraction and data integration
method for the accurate and interpretable classification of biological samples
based on their mRNA and miRNA expression profiles. The main idea is to use
the knowledge of miRNA targets and better approximate the actual protein
amount synthesized in the sample. The raw mRNA and miRNA expression fea-
tures become enriched or replaced by new interaction-based aggregated features
that model the mRNA-miRNA regulation instead. The sample profile presum-
ably gets closer to the phenotype being predicted. The proposed subtractive
aggregation method directly implements a simple mRNA-miRNA interaction
model in which mRNA expression is modified using the expression of its target-
ing miRNAs. A similar approach has already been demonstrated in [1], where we
employ matrix factorization proposed in [33] instead. In comparison to the sub-
tractive method under study, the matrix-factorization approach leaves room for
developing features corresponding to larger functional co-modules, but it could
overfit training data when dealing with a small number of samples.

The method widely used for analyzing associations between two heteroge-
neous genome-wide measurements acquired on the same cohort is canonical cor-
relation analysis (CCA) [23, 27, 32]. CCA is applicable for mRNA and miRNA
expression integration. However, CCA is based purely on mutual correlation be-
tween distinct feature sets and disregards prior knowledge of their interaction.
It rather aims to describe or simplify the underlying data, while we focus on
prediction of the decrease of respective protein level due to inhibition that does



not primarily manifest in correlation. In [20] the authors model heterogeneous
genomic data by the means of sparse regression. The method explains mRNA
matrix through decomposition into miRNA expression, copy number value and
DNA methylation matrices. It follows similar descriptive goals as CCA.

Incentive for our method design comes from probe sessions performed on
patients with myelodysplastic syndrome (MDS). MDS is a heterogeneous group
of clonal hematological diseases characterized by ineffective hematopoiesis orig-
inating from hematopoietic stem cells [30]. Patients with MDS usually develop
severe anemia and require frequent blood transfusion. MDS is also characterized
by a high risk of transformation into secondary acute myeloid leukemia, and thus
could serve as a model for the research of leukemic transformation.

Of the different cytogenetic abnormalities found in MDS, deletion of the
long arm of chromosome 5 (del(5q)) is the most common aberration. MDS
with isolated del(5q) exhibits a distinct clinical profile and a favorable out-
come. Lenalidomide is a relatively new and potent immunomodulatory drug
for the treatment of patients with transfusion-dependent MDS with del(5q). It
has pleiotropic biologic effects, including a selective cytotoxic effect on del(5q)
myelodysplastic clones. As miRNAs serve as key regulators of many cellular pro-
cesses including hematopoiesis, a number of miRNAs have been also implicated
in the pathophysiology of MDS [24, 4].

The paper is organized as follows. Section 2 describes the proposed subtrac-
tive method (SubAgg) including its SVD-based modification (SVDAgg) that
enables different subtractive weights for different miRNAs. Section 3 describes
the MDS domain, defines the learning tasks and summarizes the experimental
protocol. Section 4 provides experimental results. Section 5 analyzes the inter-
mediate results to deeper understand the functioning of the proposed methods.
Section 6 concludes the paper.

2 Materials and Methods

This section covers the procedures proposed for the integration of mRNA and
miRNA data. First, inputs required for correct functionality of the methods
are defined in Sect. 2.1. Then dataset merge, a simple integration technique
serving as a benchmark, is presented in Sect. 2.2. The new integration method,
subtractive aggregation, which is based on the knowledge about interactions
between mRNA and miRNA features, is presented in Sect. 2.3. In Sect. 2.4 we
introduce another interaction-based integration method that can be perceived
as an extension of subtractive aggregation that learns subtractive weights for
different miRNAs by the singular value decomposition. Sect. 2.5 gives more
details about availability of the proposed methods.



2.1 Inputs

The integration method requires two datasets; one containing mRNA measure-
ments, and one containing miRNA measurements. Those two datasets must be
matched; i.e., both must contain samples taken from the same patients and the
same tissue types.

Let G = {g1, ..., gn} be the genes, R = {r1, ..., rm} be the miRNAs and
S = {S1, ..., Ss} be the interrogated samples (tissues, patients, experiments).
Then xG : G × S → R is the amount of respective mRNA measured by mRNA
chip in particular samples, and xµ : R × S → R is the expression profile of
known miRNA sequences; i.e., the amount of respective molecules measured by
the miRNA chip within the samples.

For further reference, the mRNA dataset will be denoted as an s× n matrix
XG, with s samples and n genes. Similarly, the miRNA dataset will be referred
to as an s × m matrix Xµ, with m miRNAs. Henceforth, column vectors of
the two data matrices,

{
xG
i

}n
i=1

and {xµi }
m
i=1, represent measured expression of

particular genes and miRNAs, respectively.
The integration method requires information pertaining to which miRNA

targets which mRNA. The known miRNA-gene control system is represented by
binary relation T ⊂ R× G.

2.2 Dataset Merge

The most straightforward method of obtaining integrated mRNA and miRNA
data is merging the two respective datasets. This method, as mentioned above,
was presented by [17] and is included in our experimental evaluation as a bench-
mark. The resulting merged dataset simply contains column-wise concatenated
mRNA and miRNA data matrices. The advantages of this integration approach
are no required prior knowledge of targets and computational efficiency. Exclud-
ing prior knowledge of targets, however, means that the target relationships are
to be induced empirically by the classifier itself. The question remains as to
whether the classifier is capable of doing that. Also, this approach increases the
already-high number of features.

2.3 Subtractive Aggregation (SubAgg)

Unlike degradative effect (see Sect. 1) of miRNA on the molecule of mRNA may
be visible even in mRNA feature set, the inhibitive effect not. This assumption
was a motivation for our proposed method. The method emulates an amount of
truly translated mRNA by subtracting a proportion of miRNA expression values
from their respective target mRNAs. At the same time, it minimizes the number
of parameters needed to be learned to 1. This characteristic complies with the
inconvenient sample set size and the feature set size rate.

Due to the fact, that many aspects of miRNA-mRNA interactions are not
yet fully understood and remain unclear, we were forced to involve several sim-
plifying assumptions as follows: 1) miRNA effect is strictly subtractive, 2) the



measured miRNA amount is proportionally distributed among its targets, and
3) the mRNA inhibition rate is proportional to the amount of available targeting
miRNA.

Each gene, or rather its mRNA transcript, g ∈ G has a defined set of miRNAs
which target it, Rg ⊂ R. Conversely, each miRNA r ∈ R has a defined set of
mRNAs which it targets, Gr ⊂ G. Let, xGg be the amount of mRNA measured
for respective gene g in an arbitrary tissue sample and xµr be the amount of
particular miRNA r measured in an arbitrary sample. Let pr be the proportion
of the amount of r ∈ Rg used to regulate the expression of gene g and σ be
a coefficient representing the strength of the inhibition of mRNA by miRNAs.
Since the process is considered to be strictly subtractive, the aggregated value
representing the inhibited mRNA of gene g, denoted xsubg would be obtained by
subtracting as follows:

xsubg = XG
g − σ

∑
r∈Rg

prx
µ
r . (1)

This equation takes an above-mentioned simplified view of inhibition of the
gene by all targeting miRNAs. Hence, proportion pr is defined as a ratio of XG

g

to the sum of levels of all targeted mRNAs. The inhibition equation is then
expanded:

xsubg = XG
g −

c

|Rg|
∑
r∈Rg

XG
g∑

t∈Gr
XG
t

xµr . (2)

Further, the parameter σ has been expanded in (2). The strength of inhibition
is an unknown value, but needs to be somehow represented nonetheless. In this
method, it is modeled as the product of a real parameter c and a normalizer
defined as 1/|Rg|. The real parameter c represents the unknown strength of the
relationship and its values are subject to experimentation. Intuitively, the larger
c is, the more prominent the miRNA data are (larger c amplifies the inhibition).
The c parameter can be set uniformly for all genes, or alternatively, different c
values may be employed for different mRNAs. Concerning the limited sample
sets and the risk of overfitting, we worked with the uniform c for all mRNAs. Its
setting is further discussed in the experimental part of the paper.

It is possible to obtain the overall data matrix Xsub of inhibited mRNA by
iteratively updating the submatrix XG

1...s,Gr , thus calculating all xsubg in Equa-
tion (2) pertaining to one miRNA and all samples in one step. Henceforth, the
implementation of (2) is iterated over particular miRNAs, as there are far fewer
miRNAs than mRNAs:

Xsub
1...s,Gr = XG

1...s,Gr − c∆(u)∆(xr)∆(s)−1XG
1...s,Gr , (3)

where ∆(v) denotes a diagonal matrix, whose (i, i)-th item is equal to the i-th
value of a vector v; u is a vector containing the number of targeting miRNAs for
each mRNA and s = XG

1...s,Gr1|Gr| is a vector of mRNA value sums pertaining
to miRNA targets in all samples.



2.4 SVD-based Aggregation (SVDAgg)

The aim of an integration method in general, is to reduce the mRNA vectors
and their respective targeting miRNAs into one aggregated feature. A common
known method which reduces data, preserving as much useful information con-
tained in the non-reduced vectors as possible, is Singular value decomposition
(SVD) [6].

The second method we propose, SVD-based aggregation, is based on the idea
that targeting miRNAs of each gene can be represented in one dimensional basis
space. So, for each gene g, the expression data submatrix Xµ

1...s,Rg
, referring to

the respective targeting miRNAs, is projected into its first singular vector:

xµ,svd = Xµ
1...s,Rg

V1...|Rg|,1, (4)

where V is the singular vector matrix of targeting miRNAs. Vector xµ,svd, the
new representative of targeting miRNAs, is then joined to the respective mRNA
vector, and reduced into one dimensional space again:

xG,svd
g =

[
xGg ,x

µ,svd
]
U1...2,1, (5)

where U1...2,1 is the first singular vector of the two concatenated vectors.
The new feature xG,svd

g , a virtual profile comprising the gene and its miR-
NAs, is computed in two steps. The reason for not aggregating the mRNA vector
and respective miRNA vectors together at the same time follows. Such an al-
ternative approach gives almost all the power to the miRNAs, and since they
would constitute a majority of vectors, SVD would have a tendency to disregard
the information contained in the mRNA, which is necessary to avoid. Moreover,
this effect would increase with the increasing number of targeting miRNAs.

2.5 SubAgg and SVDAgg Availability

Both SubAgg and SVDAgg are available as a part of the web tool miXGENE
(http://mixgene.felk.cvut.cz/) [11]. miXGENE is a workflow management
system dedicated for machine learning from heterogeneous gene expression data
using prior knowledge. The tool generalizes the research presented in this paper,
allowing integration and exploitation of more feature types and prior knowledge,
e.g., epigenetic data and gene ontologies, respectively. The tool is elaborated
upon in close connection with our collaborative biological departments that dis-
pose of the above-mentioned data and have a strong interest in their integration
within particular problem-oriented projects.

With miXGENE, all experiments are built from predefined functional compo-
nents called blocks using an interactive workspace. As an example see the scheme
of our experimental workflow in Fig. 2. Each block usually contains, in contrast
to standard data mining systems, a few atomic activities such as downloading
input data, preprocessing and diagnostic visualization in the source dataset pro-
viding block.



The main contribution of miXGENE tool is a possibility to iterate through
several experimental settings and propose the best workflow dedicated for the
given domain. miXGENE website presents another case study that employs fea-
ture integration methods in the domain of germ cell tumor classification.

Fig. 2. The experimental setting of this paper encoded as a miXGENE workflow. Each
block represents one meaningful step in the experiment (see Sect. 3.4.

3 Experiments

This section describes the MDS domain, form of prior knowledge and defines rel-
evant learning tasks. Further the approach to handle heterogeneous features and
context dependent parameter is explained. Finally, the experimental procedure
is summarized.



3.1 Datasets

The data were acquired in collaboration with the Institute of Hematology and
Blood Transfusion in Prague. Illumina miRNA (Human v2 MicroRNA Expres-
sion Profiling Kit, Illumina, San Diego, USA) and mRNA (HumanRef-8 v3 and
HumanHT-12 v4 Expression BeadChips, Illumina) expression profiling were used
to investigate the effect of lenalidomide treatment on miRNA and mRNA ex-
pression in bone marrow (BM) CD34+ progenitor cells and peripheral blood
(PB) CD14+ monocytes. Quantile normalization was performed independently
for both the expression sets, the datasets were scaled to have the identical me-
dian of 1 then. The mRNA dataset has 16,666 attributes representing the GE
level through the amount of corresponding mRNA measured, while the miRNA
dataset has 1,146 attributes representing the expression level of particular miR-
NAs. The measurements were conducted on 75 tissue samples categorized ac-
cording to the following conditions: 1) tissue type: peripheral blood monocytes
vs. bone marrow cells, 2) presence of MDS and del(5q), 3) lenalidomide treat-
ment stage: before treatment (BT) vs. during treatment (DT). Henceforth, the
samples can be broken into 10 categories. The categories, along with the actual
number of samples, are shown in Tab. 1:

Table 1. The overview of MDS classes.

PB

Healthy 10

5q-
BT 9
DT 13

non 5q-
BT 4
DT 5

BM

Healthy 10

5q-
BT 11
DT 5

non 5q-
BT 6
DT 2

The domain experts defined 16 binary classification tasks with a clear diag-
nostic and therapeutic motivation. There are 8 tasks for each tissue type, the
tissue types are encoded in the task names, while the numbers of samples are
shown in parentheses. The afflicted group comprises all MDS patients regardless
their treatment status.

1. PB1: healthy (10) × afflicted (31),
2. BM1: healthy (10) × afflicted (24),
3. PB2: healthy (10) × BT (13),
4. BM2: healthy (10) × BT (17),
5. PB3: healthy (10) × BT with del(5q) (9),
6. BM3: healthy (10) × BT with del(5q) (11),



7. PB4: healthy (10) × DT (18),
8. BM4: healthy (10) × DT (7),
9. PB5: afflicted: del(5q) (9) × non del(5q) (22),

10. BM5: afflicted: del(5q) (8) × non del(5q) (16).
11. PB6: healthy (10) × DT del(5q) (13),
12. BM6: healthy (10) × DT del(5q) (5),
13. PB7: healthy (10) × BT non del(5q) (4),
14. BM7: healthy (10) × BT non del(5q)(6),
15. PB8: del(5q): BT (9) × DT (13),
16. BM8: del(5q): BT (11) × DT (5).

3.2 Prior Knowledge

Considering prior knowledge, we downloaded the interactions between genes and
miRNAs from publicly available databases. TarBase 6.0, strives to encompass
as many miRNA-mRNA validated targeting relations scattered in literature as
possible. The database, maintained by DIANA Lab, was built utilizing text-
mining-assisted literature curation – literature covering the discovery of new
target relationships were downloaded in XML format from MedLine, processed
using text mining and the resulting candidates for addition to the database were
reviewed before the actual entry by the curators (DIANA Lab personnel). Its
respective target matrix, filtered so as to contain solely human data, covers 228
miRNAs, 11,996 mRNAs and 20,107 target relationships between them. When
selecting only the mRNAs and miRNAs available in the actual chip probesets
and carefully translating and unifying miRNA identifiers using miRBase [15],
the TarBase covers 179 miRNAs, 8,188 mRNAs and contains 14,404 target re-
lationships.

The miRWalk database [5], comprises both validated and predicted targets.
In our experiments, only the predicted target database is used; the entries in the
validated target database are already included in TarBase 6.0. Since, according
to the authors, no target prediction algorithm consistently achieves better results
than the others, the predicted target database includes not only targets obtained
using the eponymous miRWalk algorithm, but also targets provided by other
prediction algorithms. Our experiments use five of them, which are outlined in
Sect. 1. The predicted targets dataset used in the experiments was obtained
from miRWalk by merging the results of multiple queries on the mRNA targets
of canonically-named miRNAs present in the experimental miRNA dataset. Each
query consisted of up to 20 miRNAs (limit imposed by the miRWalk site), each
query was restricted to targets in the 3’ UTR region with p-value less or equal
to 0.01. The resulting dataset obtained contains 392 miRNAs, 14,550 mRNAs
and 89,402 unique predicted human miRNA-mRNA target relationships. 389
miRNAs, 12,847 mRNAs and 79,014 relationships were applicable in terms of
our actual mRNA and miRNA probesets.

The merged target dataset concatenates both the above-mentioned resources.
It is further referred to as the extended predicted database and contains 93,325
target relationships.



3.3 Feature and Parameter Selection

The main aim of the experiments is to verify whether the features, extracted by
prior knowledge about their mutual interactions, can improve classification qual-
ity. Since we deal with classes of different sizes, we use the Mathews correlation
coefficient as a balanced quality measure. It returns a value between -1 and +1,
+1 represents a perfect match between annotation and prediction. We employ
three benchmarking feature sets to tackle this issue. The first contains mRNA
profiles only, the second takes purely miRNA profiles, and the third concatenates
them as described in Sect. 2.2. The interactions-enriched feature sets denoted as
SubAgg and SVDAgg take the merged feature set and concatenate it with the
aggregated features obtained in (3) and (5) respectively.

The reason, why the original features, i.e. mRNAs and miRNAs, were al-
lowed to be partially preserved along the aggregated features in the interaction-
enriched feature sets, is to reflect both regulatory mechanisms which miRNA
uses to suppress expression of a gene. As described in Sect. 1, a miRNA acts
either through inhibition or degradation of respective gene mRNA. In case of
degradation we assume that expression regulatory effect is apparent even in the
original mRNA feature set, while corresponding mRNA molecules are degraded
entirely by regulatory miRNA. The next reason is that not all the regulatory
interactions nor the aggregated features need to be valid in particular sample
context (see the inhibition strength parameter in Sect. 1). Therefore, to verify
whether the prior knowledge about miRNA-target interaction improves classifi-
cation quality, we used both original and computed features and let supervised
feature selection to choose.

As mentioned, unlike SVDAgg, SubAgg has the inhibition strength parameter
c that needs to be optimized. The most direct way is to set it to 1 relying purely
on mRNA and miRNA expression normalization. However, the absolute mRNA
and miRNA expression values can hardly be directly matched. Moreover, the
relative predictive power of mRNA and miRNA feature sets varies for different
tasks. That is why we tuned the optimal value of c in terms of internal cross-
validation. The parameter values 10k, k∈{-2,1,0,1,2} were concerned, the best
value was taken in each experimental setting and fold uniformly for all mRNAs.

In order to keep a reasonable number of features while examining appropriate
features according to particular data context, and maintain the constant number
of features across different feature sets in terms of one learning task, we applied
the well-known feature selection method SVM-RFE [10]. In each of the learning
tasks, the size of the reduced feature set was established as follows. We found
the number of active mRNAs and the number of active miRNAs, and took their
minimum. This value served as the target feature set size for mRNA, miRNA,
merged and both subtractive classifiers.

3.4 Experimental Protocol

We used 5 times repeated stratified 5-fold cross validation to assess the perfor-
mance of the proposed methods as well as their benchmarking counterparts. The
whole learning workflow was implemented in R environment.



We deal with 8 binary MDS tasks defined in Sect. 3.1. At the same time, we
have two distinct target relations (validated and extended) as described in the
previous section. These target relations have different domains and ranges, the
domain and range of the validated target relation make subsets of their extended
counterparts. As the aggregated features concern purely the domain miRNAs
and the range mRNAs we filter out the rest of mRNA and miRNA profiles from
the benchmarking datasets as well. This is done in order to make the comparison
of classifier performance on benchmarking datasets more relatable and better
identify the potential asset of the target relationships. The absolute score is
not important, the main issue is the relative comparison in terms of a single
learning task. In this way, 64 different experimental settings originate (2 tissue
types × 8 task definitions × 2 target relations × 2 classification algorithms).
The settings are independent between tissue types, however, they deal with
overlapping sample and feature sets within the same tissue type.

We employed two diverse classification algorithms to avoid the dependence
of experimental results on a specific choice of learning method. Support Vector
Machine (SVM) with a linear kernel and the regularization parameter C = 1 was
taken as the first option. SVM prevails in predictive modeling of gene expression
data and is usually associated with high resistance to noise in data. C setting
proves robust even when learning with many relevant features [13]. Näıve Bayes
is a simple and interpretable classifier.

4 Results

The individual feature sets were tested and compared under all the experimental
settings defined above. The results reached are available in Tab. 2; the table
summarizes the results achieved by the two classification algorithms.

The following direct observations can be drawn from the result tables. There
are settings that can be perfectly solved by either the mRNA or miRNA profiles.
Then, there are settings with incomparable score reached with the mRNA and
miRNA feature set. Naturally, these settings are not suitable for any integration
including the concatenation as this integration can hardly outperform the better
of the raw feature sets. These settings can be a priori identified and omitted from
the integration procedure, or the procedure can be parametrized in such a way
that the inferior dataset has no influence on the final feature set (e.g., c parameter
in SubAgg is set to 0).

On the other hand, when dealing with mRNA and miRNA profiles of com-
parable predictive power, the integration improves classification performance. In
general, the knowledge-based methods outperform their concatenation bench-
mark. As already mentioned, we deal with dependent tasks and settings while
traditional hypothesis testing asks for independence. That is why we cannot ap-
ply Wilcoxon, Friedman, or other classical tests. Instead, the methods are sorted
and ranked according to their pair-wise comparison in each of the particular set-
tings. Figure 3 provides an overall comparison graph and the last row of result



Fig. 3. Pair-wise classification comparison graph. The nodes represent particular fea-
ture sets, an edge from node a to node b, annotated as x -y-z means that method a
outperforms method b in x experiments, in y ties and in z losses.

tables gives the ranks averaged across all the settings. The comparison suggests
that the knowledge-based feature sets dominate the rest of the feature pool.

Another useful comparison measure is the overall number of occurrences,
denoted as synergies, in which the knowledge based features outperform both
raw feature sets. The presented results show 31 and 26 synergies occurred in
the case of SubAgg and SVDAgg methods respectively; only 10 synergies can
be observed in the case of the benchmark integration. In the other words, when
dealing with settings that cannot be perfectly solved by the original features,
the knowledge based integration helps.

SVM turns out to be a better choice than näıve Bayes. Let us stress that the
choice of target type (validated, extended) may seem to largely affect classifi-
cation quality; however, the main reason for this difference lies in the filtering
mentioned in Sect. 3.4. The validated and extended runs cannot be directly
compared (validated clearly worse than extended). The relative comparison be-
tween the merged and the other knowledge-based methods suggests that when
including the predicted targets into the aggregation, no clear improvement can
be observed.

5 Discussion

In order to understand in more depth the functioning of the proposed methods
we analyzed the intermediate results in the auxiliary experiment that avoided



Table 2. Classification performance of two learners in terms of MCC. Relat. stands
for the target relation type (val means validated and ext extended), mR for mRNA,
miR for miRNA, mer for merged, Sub stands for SubAgg and SVD for SVDAgg. The
last row gives average ranking of each feature set; the lower the rank, the better.

Task Relat.
SVM Näıve Bayes

mR miR mer Sub SVD mR miR mer Sub SVD

PB1 ext 0.96 0.65 0.96 1.00 1.00 0.84 0.73 0.84 0.84 0.80
PB2 ext 0.98 0.88 0.98 0.98 1.00 0.87 0.85 0.88 0.85 0.90
PB3 ext 0.98 0.81 0.98 1.00 1.00 0.85 0.69 0.85 0.90 0.88
PB4 ext 1.00 0.80 1.00 1.00 0.97 0.83 0.73 0.83 0.84 0.82
PB5 ext 0.86 0.97 0.89 0.89 0.94 0.79 0.98 0.86 0.88 0.86
PB6 ext 1.00 0.82 1.00 1.00 0.98 0.82 0.77 0.82 0.88 0.97
PB7 ext 0.76 0.86 0.72 0.83 0.79 0.65 0.79 0.65 0.65 0.97
PB8 ext 0.62 0.49 0.56 0.56 0.64 0.32 0.43 0.30 0.31 0.52
BM1 ext 0.97 0.92 0.99 0.96 0.96 0.93 0.92 0.94 0.93 0.94
BM2 ext 0.91 0.95 0.91 0.94 0.93 0.95 0.95 0.95 0.87 0.98
BM3 ext 0.94 0.98 0.94 0.94 0.94 0.91 0.98 0.91 0.91 0.96
BM4 ext 0.98 0.88 0.98 0.95 0.84 0.98 0.79 0.98 0.98 0.79
BM5 ext 0.73 0.91 0.77 0.82 0.91 0.59 0.87 0.73 0.71 0.75
BM6 ext 0.88 0.85 0.88 0.91 0.85 1.00 0.71 0.80 0.94 0.71
BM7 ext 0.95 0.97 0.97 0.95 1.00 0.87 0.87 0.87 0.87 0.90
BM8 ext 0.57 0.54 0.54 0.43 0.45 0.32 0.40 0.38 0.41 0.27
PB1 val 0.96 0.78 0.96 1.00 0.99 0.85 0.55 0.85 0.88 0.88
PB2 val 0.98 0.83 0.98 0.98 0.92 0.83 0.63 0.85 0.87 0.97
PB3 val 0.94 0.77 0.98 1.00 0.96 0.88 0.64 0.88 1.00 1.00
PB4 val 1.00 0.76 1.00 1.00 0.97 0.86 0.69 0.86 0.88 0.84
PB5 val 0.86 0.94 0.89 0.89 0.89 0.84 0.94 0.84 0.88 0.86
PB6 val 1.00 0.90 1.00 1.00 1.00 0.81 0.63 0.81 0.90 0.91
PB7 val 0.72 -0.16 0.65 0.79 0.61 0.86 0.83 0.90 0.97 0.83
PB8 val 0.62 0.51 0.62 0.52 0.59 0.32 0.21 0.30 0.36 0.52
BM1 val 0.97 0.85 0.99 0.96 0.99 0.89 0.89 0.92 0.93 0.93
BM2 val 0.90 0.87 0.91 0.95 0.95 0.95 0.83 0.95 0.90 0.95
BM3 val 0.96 0.91 0.96 1.00 0.98 0.91 0.91 0.91 0.89 0.94
BM4 val 0.98 0.86 0.98 0.95 1.00 0.95 0.88 0.95 0.98 0.91
BM5 val 0.69 0.89 0.73 0.77 0.72 0.58 0.82 0.69 0.73 0.69
BM6 val 0.91 0.80 0.88 0.91 0.94 0.94 0.85 0.88 0.97 0.91
BM7 val 0.92 0.90 0.97 0.97 0.95 0.87 0.87 0.87 0.87 0.87
BM8 val 0.57 0.61 0.50 0.54 0.57 0.15 0.20 0.19 0.27 0.36

Average rank 3.08 3.81 2.88 2.56 2.67 3.41 3.72 3.17 2.36 2.34



the internal cross-validation. In particular, we focused on the role of c value
(changed in smaller steps) in combination with the relationship between mRNA
and miRNA predictive strengths. The individual feature sets were tested and
compared under all the experimental settings defined above.

Fig. 4. The heat map illustrating the role of original mRNA profiles and their sub-
tracted counterparts within SubAgg. The experiments in which SVM-RFE preferred
the aggregated to original features are shown in green. In the red-colored experiments,
the original features prevailed. The heat map concerns top 100 features. The lightest
green color observed in the map corresponds to the distribution of 33 original versus 67
aggregated features, the lightest red stands for 54 original and 46 aggregated features.

The auxiliary experiment examines a ratio of aggregated and original fea-
tures in the final selected feature population. The results in form of a heat map
in Fig. 4 confirm asserting tendency of aggregated features with growing value of
the c parameter. In a reasonable portion of experiments, as increasing inhibition
strength, the aggregated features, which represent particular mRNAs inhibited
by targeting miRNAs, become more distinct from the original (uninhibited) mR-
NAs and gain more predictive power.

The following list of conclusions can be drawn from the heat map and the
results in Tab. 2. Firstly, the aggregated profiles tend to replace the original
mRNA ones in the tasks with predictive miRNA features. Secondly, the predic-
tive strength of some mRNA profiles still deteriorates. General replacement of all
the original mRNA profiles cannot be recommended. Thirdly, feature selection
that leads to the enrichment of the original set of features is preferable. It may
serve as a tool for automatic balancing of the individual feature classes based
on their predictive strength in the given task. It also may help in interpretation



of the role of miRNA in gene expression regulation within particular sample
contexts. Prevalence of aggregated features suggests the inhibitory mechanism
triggered by miRNAs and may follow up in future research.

6 Conclusions

Molecular classification of biological samples based on their expression profiles
represents a natural task. However, the task proved conceptually difficult due
to the inconvenient rate of the sample and feature set sizes and complexity and
heterogeneity of the expression process. These characteristics often cause overfit-
ting. Classifiers do not sufficiently generalize; instead of revealing the underlying
relationships, they capture perturbations in training data. This problem can be
minimized by regularization; i.e., introduction of additional knowledge. The reg-
ularized models should be more comprehensible and potentially more accurate
than standard models based solely on a large amount of raw measurements.

The integration of heterogeneous measurements and prior knowledge is non-
trivial, though. In this paper we proposed the subtractive method that aggre-
gates mRNA and miRNA values by subtracting a proportion of miRNA ex-
pression values from their respective target mRNAs. The method simplifies the
mRNA-miRNA interaction and minimizes the number of parameters needed to
be learned to 1. We also proposed another integration method that can be per-
ceived as an extension that enables different subtractive weights for different
miRNAs; the weights are learned by SVD.

In this work we classified myelodysplastic syndrome patients under 64 ex-
perimental settings. We compared five types of feature sets. Two of them repre-
sented raw homogeneous expression measurements (mRNa and miRNA profiles),
the third implemented their straightforward concatenation, and the last two re-
sulted from SubAgg and SVDAgg integration. The comparison suggests that the
knowledge-based feature sets dominate the rest of the feature pool, and the fea-
tures resulting from the mRNA-miRNA target relation can improve classification
performance.

There is still a lot of future work. More problem domains need to be con-
sidered. The prior knowledge should be extended to cover the gene regulatory
network (the protein-protein interactions, interactions between genes, and their
transcription factors). Another challenge is to employ epigenetic data, namely
DNA methylation. Concerning the algorithmic issues, we intend to develop an-
other parameter-free integration method where the prior knowledge controls
pseudorandom construction of weak classifiers vaguely corresponding to the in-
dividual biological processes. The weak classifiers will later be merged into an
ensemble classifier.
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