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Abstract—Directed evolution is an iterative laboratory process
of designing proteins with improved function by iteratively
synthesizing new protein variants and evaluating their desired
property with expensive and time-consuming biochemical screen-
ing. Machine learning methods can help select informative or
promising variants for screening to increase their quality and
reduce the amount of necessary screening. In this paper, we
present a novel method for machine-learning-assisted directed
evolution of proteins which combines Bayesian optimization with
informative representation of protein variants extracted from a
pre-trained protein language model. We demonstrate that the new
representation based on the sequence embeddings significantly
improves the performance of Bayesian optimization yielding
better results with the same number of conducted screening in
total. At the same time, our method outperforms the state-of-the-
art machine-learning-assisted directed evolution methods with
regression objective.

Index Terms—protein engineering, directed evolution, Bayesian
optimization, large language models, sequence embedding

I. INTRODUCTION

Protein engineering (PE) is the process of designing proteins
with desired properties, such as improved stability, catalytic
function, or specific binding affinity [1]. PE can be lever-
aged in industrial applications, environmental applications,
medicine, nanobiotechnology, and other fields [1]]. Because
the functional properties of proteins are determined by their
sequence of amino acids [2], the task of PE translates to
finding a sequence of amino acids with the desired proper-
ties/function. However there is an infinite number of possible
protein sequences and non-functional proteins dominate the
sequence space [2], which makes PE a challenging task. One
of the most widespread approaches to this issue is Directed
Evolution (DE) [3].

DE is an iterative laboratory process of creating new
biomolecules of desired properties, which mimics Darwinian
evolution in a controlled environment [3[]. DE circumvents the
problem of the vast protein-sequence space filled with non-
functional sequences by iteratively mutating an existing pro-
tein (often called the wild-type variant) to improve its function
[3]. A DE iteration consists of two main steps: mutagenesis,
in which parent molecule(s) are mutated and/or recombined
to create a library of variants, and screening/selection, where
high-quality variants are identified to form a new generation
of parents with improved properties [3]]. The quality of a given
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protein variant in terms of the desired property is reported as
a numerical value termed fitness.

The wet lab experiments associated with synthetization and
screening of the mutated protein variants are expensive and
time-consuming [2]. Because of this, the screening process
is a common bottleneck of all DE methods. This motivates
the employment of machine learning methods to minimize the
amount of conducted screening while maximizing the highest
obtained fitness. Instead of discarding the low-fitness variants
as in traditional DE, methods of machine-learning-assisted
directed evolution (MLDE) incorporate information about all
screened variants into a model which predicts a protein’s
fitness based on its sequence [2]. The model is then used to
intelligently select new variants for screening which maximize
the predicted fitness and/or minimize uncertainty in the model
(2]

In this work, we propose a novel MLDE method, Bayesian
Optimization in Embedding Space (BOES), which combines
Bayesian optimization (BO) [4] with informative embedding
of protein sequences extracted by a pre-trained protein lan-
guage model (PPLM). BOES exploits a PPLM to extract
informative embeddings of all variants in the sequence space
and the BO procedure is conducted in the obtained embedding
space. In each iteration, a Gaussian process (GP) model is
fitted to the already screened variants and the next variant for
screening is chosen by maximization of expected improvement
(EI). To the best of our knowledge, this paper is the first
work that successfully combines BO with a PPLM-extracted
embedding. In the following text, we describe the new com-
bination and demonstrate its applicability to efficient protein
engineering.

II. RELATED WORK

A wide variety of models have been applied to MLDE in-
cluding simple linear regression models, decision trees/forests,
kernel methods, Gaussian Process models, and deep learning
[2]. Existing MLDE methods typically employ regression
methods which require an additional exploitation stage since
they do not prioritize high-fitness variants during the training
[5]—[9]]. In contrast, BO corresponds to the objective of MLDE
much more closely. As an optimization method, BO aims
to maximize the fitness function in each iteration and no



additional exploitation stage is required. Furthermore, BO is
very data efficient, making it an ideal choice in problems
where the evaluation of data points is costly and the objective
function is multimodal [4]]. Both of these properties are key
difficulties in exploring protein fitness landscapes [10]], [[11].

BO guides the exploration-exploitation trade-off based on
the selected acquisition function. Two notable acquisition
functions are widely used in PE applications. The upper
confidence bound (UCB) acquisition function selects the data
point with the largest upper confidence bound for evaluation,
prioritizing data points that are predicted to be both optimized
and uncertain [[12]]. The relative importance of the prediction
and uncertainty can be manually controlled with a weight-
ing parameter [13[]. The second notable acquisition function,
expected improvement (EI), selects the data point where the
expectation over the possible values of the objective function
is predicted to have the largest improvement over the current
best observation [4]. Similarly to UCB, this approach also
strikes a balance between prioritizing data points predicted to
be optimized and unexplored data points where the prediction
is uncertain. Both methods have been shown to be efficient in
the number of function evaluations required to find the global
optimum of multi-modal black-box objective functions [14],
[15]].

UCB has been used in GP regression with a structure-
based metric of similarity to provide a probabilistic description
of the landscapes for various properties of proteins and to
design a cytochrome P450 variant that is more than 5°C
more thermostable than P450 variants previously optimized by
different methods and 14 °C more stable than the most stable
parent from which it was made [12]]. In [16]], GP classification
and regression models were trained with UCB on expression
and localization data from 218 channelrhodopsin [17] vari-
ants. Structural similarity obtained by aligning residue-residue
contact maps of each variant and counting the number of
identical contacts were used as a metric of sequence similarity.
In addition to GP regression with UCB criterion, in [18]], the
method first samples 20 variants from the sequence space
that maximize the Gaussian mutual information. The sampled
variants are used to fit the GP before the first iteration of
sequential optimization. Lastly, in [13]], a GP trained with UCB
is compared with other methods that model uncertainty differ-
ently or do not model uncertainty at all. [13]] highlights GP-
based methods as particularly useful and shows a consistently
strong performance of the GP model.

A GP model with the EI acquisition function has been
shown to outperform traditional DE methods in an in silico
experiment [19]]. The proposed method selects variants for
evaluation in batches of 19 and uses the squared exponen-
tial kernel with Euclidean distances computed from one-hot
encoding of the variants at mutated positions. The recent
optimization framework for protein DE, termed ODBO [20],
combines GP and EI acquisition function with a novel low-
dimensional, function-value-based protein encoding strategy
and prescreening outlier detection. A protein variant is repre-
sented by a feature vector, where each amino acid from the

sequence is replaced by the mean or maximum value of the
fitness measurements of all variants with the amino acid at that
position. Then, in each iteration, the vector representations are
inputted into the prescreening via Extreme Gradient Boosting
Outlier Detection (XGBOD) [21]] which filters out potential
low fitness samples before the BO step. [20] argues that
the novel representation creates a smoother local variable
for regression while the prescreening aims to perform more
efficient acquisitions in each iteration.

Different protein sequence representations have been ap-
plied in BO-based MLDE methods and the advantage of
informative representation has been previously demonstrated
[20]. The representations learned by PPLMs are known to
carry useful information about the function of the variants
[22[]-[25]], which enables the definition of a sensible metric of
distance between variants. Furthermore, a key advantage of the
PPLM-extracted embedding space over different informative
input spaces is that no variants need to be screened for
the construction of the input space, saving screening costs.
However, PPLM-extracted embeddings have been previously
thought to be incompatible with a GP model and BO because
of their high dimensionality [26]]. In this work, we show that
if we limit the number of hyperparameters of the GP model
by reducing the number of effective dimensions, BO can be
employed in the embedding space to great effect.

III. PROBLEM FORMULATION

The task of MLDE is formulated as black-box optimization
with expensive objective function evaluation. The objective
can be formalized as finding the word & from the set of all
words X over an alphabet consisting of the twenty common
amino acids [27] which maximizes the objective function f :
X = R,

& = argmax f(x) (1)

rcX

The objective function f represents the costly screening ex-
periments. For a variant specified by word © € X, f returns
the fitness of the variant. In full generality, the set X" is
infinite. In MLDE literature, the problem is often simplified
by considering only substitutions of the wild-type protein,
limiting the set to [?° variants, where [ is the protein’s length.
The problem is usually simplified further, by limiting the
number of mutation positions n to very few positions selected
by an informed oracle as largely influential to the protein’s
function, resulting in n20 variants. This is also the case in our
in-silico experiments, where we use two datasets, each with
n = 4 pre-selected mutation positions.

IV. PROPOSED METHOD

BOES employs BO with a GP model to select variants for
screening in an MLDE procedure by maximizing the expected
improvement (EI). BO with EI objective function is ideal
for MLDE application because it corresponds perfectly to
the objective of MLDE in each iteration. That is, each new
variant for screening is chosen to maximize the expectation of
improvement in the best-so-far screened fitness. This ensures



the optimal use of resources after each iteration and eliminates
the need for a predefined screening budget, which is necessary
when model regression methods are employed.

Before running the BO procedure, BOES uses a PPLM to
extract informative sequence embeddings of all variants. The
GP model is provided with an embedding function g : X — E
and models the fitness landscape in the m-dimensional se-
quence embedding space E := R™, where variants with similar
embeddings are expected to have similar properties.

The BOES algorithm is described in Alg. |I} The MLDE
procedure starts with only the wild-type protein in the set of
observations D1 = {(@wt, Ywt)}. In each iteration of BO,
the GP is fitted to the current set of observations (already
screened variants), the EI acquisition function is evaluated at
each data point (each variant) and the variant with maximal
EI is selected, screened, and added to the set of observations
with the observed fitness value.

Algorithm 1 BOES
Input: All variants X
Output: Best screened variant (x, y)

1: Initialize dataset Dy + {(@wt, f(@wt))} with the wild-

type protein
2: Fit the model GP; given D;
3:forn=1,2,...,k do
Select new variant for screening by optimizing EI

Tpi1 < argmax El(x; GP,)
xeX
Screen it Dy1 < Dy U {(®nt1, f(nt1))}
Fit the model GP, ;1 given D,
end for
return best variant (z,y) < argmax, ,yep, ., ¥

® W

EI ... Expected Improvement acquisition function.
GP, Gaussian process model fitted to dataset D,.
X - R Screening, assigns fitness to a variant.
g g

V. IMPLEMENTATION

The ESM-1b model [22] was chosen as the embedding
extractor for its ability to produce informative embeddings
[22] and the widespread use of the ESM family of PPLMs
in MLDE-related literature [6]], [9], [28]]. A plethora of other
PPLMs exist [25]], [29]-[31]], which could be applied to BOES
in the future. The goal of this work is to demonstrate that the
combination of PPLMs and BO is a feasible and promising
direction for MLDE.

A fundamental problem of employing BO in the embed-
ding space of a PPLM, and the probable reason why this
approach has not been successfully employed before, is that
BO struggles with high dimensional input spaces [4]], [20].
This is problematic because PPLM embeddings tend to have
a size in orders of 102 to 103, depending on the architecture of
the language model. This means that we are trying to run BO
in an input space with potentially thousands of dimensions. To
solve this issue, BOES defines the GP model with a custom

implementation of the Matérn 3/2 kernel k : E x E — R and
Euclidean distance d : E x E — R,

k(e,e') = exp(—V3d(e,e))(1+ V3d(e,e)) ()
dle.e’) = /(e —e)T(L-02)(e — /) 3)

to limit the effective number of dimensions to one, so that the
surrogate model only fits one length scale hyperparameter 6
instead of fitting an individual length scale for each dimension
of the embedding e = g(x) € E extracted from sequence x.

For the prior distribution of the singular length scale, a nor-
mal distribution with a mean of zero and a standard deviation
o of @, truncated (and normalized) to the interval [0; co),
was used. o was chosen such that the diagonal across the high-
dimensional embedding space corresponds approximately to
30. Since the embedding space of the used model, ESM-1b,
has 1280 dimensions and the absolute values of the elements in
the protein embeddings rarely exceed 1 (0.3 % of the elements
from all GB1 embeddings have absolute values higher than 1),
the size of the diagonal is roughly 1/1280.

The GP model is defined with zero prior mean function
to : X — 0. Zero variance o2 is used for noise, effectively
removing noise from the model, because the experiments
are conducted on a noiseless dataset. The BO procedure is
implemented with the BOSS.jl package [32]. The model is
fitted with maximum likelihood estimation by the NEWUOA
algorithm [33]] with 20 starts in a multi-start setting and lower
bound on the trust region radius penqg = 10~%. The zero noise
variance o2 is replaced with a very small positive value to
ensure numerical stability of the model. To avoid wasting the
screening budget on already screened variants, the value of
the acquisition function computed for each already screened
variant is replaced by zero before the next variant for screening
is chosen. This ensures that the screened variants cannot
be chosen again unless the acquisition function value of all
variants in the sequence space is also zero, which is practically
impossible.

Code for the implemented MLDE procedures and DE sim-
ulation baselines, as well as the used datasets, are available at
https://github.com/soldatmat/PELLM. The MLDE procedures
were implemented in a unified modular framework for in silico
DE, which is made available separately as the DESilico.jl
package [|34].

VI. RESULTS

This section presents the experimental settings used for
evaluation of the proposed method including datasets, means
of evaluation, baseline DE simulations, and comparison to
other implemented methods and SOTA MLDE methods.

A. Data

Experiments were carried out in silico on two datasets.
Each dataset maps the fitness landscape of a different wild-
type protein. The datasets consist of variant-fitness pairs of
nearly all possible variants of the wild-type protein mutated at
4 positions. The fitness of each unmeasured variant is assumed
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to be zero in all conducted experiments since the unmeasured
variants are considered meaningless to biologists [6], [9]. The
mutation positions were selected as largely influential to the
structure and function of the protein.

GB1 dataset [10] is a dataset of variants of the protein G
domain B1, mutated at four positions with non-linear epistasis
(V39, D40, G41, V54). Fitness values of GB1 variants repre-
sent the binding ability to the antibody IgG-Fc and range from
0.0 to 8.76. Fitness value of 1.0 corresponds to the binding
ability of the wild-type protein.

PhoQ dataset [35] consists of variants of protein kinase
PhoQ obtained by mutating the wild-type sequence at four
positions critical to the function of the protein (A284, V285,
5288, T289). The fitness values refer to the phosphatase or
kinase activity of different PhoQ variants and range from 0.0
to 133.59. Fitness of the wild-type protein kinase PhoQ is
3.29.

B. Performance on the Wild-type Protein

To evaluate the performance of BOES, we compared its per-
formance to SOTA regression-based MLDE methods, which
all minimize the prediction error of the model during the DE
procedure. The comparison in Table [l includes results of SOTA
MLDE methods reported in [9]. A concise description of the
included methods is adapted from [9]:

e« MLDE [5] trains an ensemble of shallow neural networks
as fitness predictors on randomly sampled variants.

o ftMLDE, focused training MLDE [6], is a strategy for
running MLDE with training sets designed to avoid holes.
The comparison includes ftMLDE with two sampling
strategies, EVmutation [36] and MSA-transformer [37].

o« CLADE [7] trains a fitness predictor with high-fitness
mutants obtained through a hierarchical clustering sam-
pling method.

o CLADE 2.0 [8] selects the high-fitness mutants with a
scoring function that employs an ensemble of methods
including a PPLM.

o AFP-DE [9] uses a PPLM to sample variants and extract
sequence embeddings. Iteratively trains a fitness predictor
with the sampled variants and finetunes the PPLM with
variants with high predicted fitness.

Furthermore, simulation of a single mutation walk (SMW)
[S] is included in the comparison to serve as a baseline with
no use of ML methods. Implementation details of the SMW
simulation can be found in [38]. Lastly, one conceptually
different optimization MLDE method is included in the com-
parison. Neighborhood Search Directed Evolution (NSDE)
[38]] performs a greedy graph search in a neighborhood graph
constructed from the variants’ sequence embeddings extracted
by a PPLM.

The regression-based methods are tested with a screening
budget of 80 variants and two different splits between the part
of the budget used for training and the rest of the budget left
to screen variants with high predicted fitness. SMW and the
two optimization methods do not split the resources, so Table
[ contains just a single result for these methods.

Dataset GB1 PhoQ
Screening budget | (24 + 56) | (48 +32) | (24 + 56) | (48 + 32)
SMW 3.90 18.44
MLDE 3.93|4.43 6.55 | 13.23
ftMLDE (EVmut.) 4.99 | 5.27 22.04| 8.68
ftMLDE (trans.) 4.98 | 5.31 17.77]26.18
CLADE 4.88 | 3.92 21.51 | 25.65
CLADE 2.0 4.36 ] 6.01 24.45 | 21.51
AFP-DE 6.20 | 6.20 24.98 | 28.19
NSDE 4.54 20.71
BOES 7.28 37.94

TABLE I: Comparison of BOES with SOTA regression-based
methods: maximum fitness obtained with 80 screened variants
starting from the wild-type protein is reported. Regression-
based methods split the screening budget between training and
exploitation (24 + 56 or 48 + 32). Optimization methods screen
all 80 variants during the optimization procedure.

Table [l shows a clear dominance of the proposed BOES
method. The results confirm that the optimization approach to
MLDE can be more efficient than methods with a regression
objective.

C. Robustness to the Starting Protein

While the performance on the wild-type protein corresponds
to the practical use of MLDE algorithms, making conclusions
about the methods’ performance based on a single run, albeit
on two different datasets, would be ill-advised. The results
obtained from such a limited evaluation can be strongly
skewed by the properties of the specific dataset. Especially
local-search methods, like the SMW baseline or the NSDE
method based on a KNN graph, could potentially show wildly
different efficiency based on the relative position of the starting
variant, the global optimum, and any local optima located
between them in the sequence space.

To ensure that the methods’ hyperparameters are not over-
fitted to the path from the wild-type variant to the global
optimum, a test of robustness to the starting protein was
conducted. This test also gives helpful insight into the variance
in performance of the DE methods. Among the tested methods
were the BOES method, the aforementioned NSDE method
[38], a perceptron-training method based on the AFP-DE pro-
cedure [9] with a different exploration stage implementation,
and two simulations of classical DE methods without the use
of ML: SMW and Recombination [5]. Implementation details
of the tested methods are included in [38]].

The evaluation was carried out by running each method
repeatedly with a different starting variant for 200 to 160,000
runs, based on the computational demand of each method.
The first quartile, median, and third quartile values of the
highest achieved fitness by each method are reported in Fig.
and Fig. [Ib] for the GB1 and PhoQ dataset, respectively.
Additionally, distributions of the highest achieved fitness at
50, 100, 150, and 190 screened variants are reported in Fig.
and Fig. [Id| The starting variant is also counted towards the
number of screened variants.

The median fitness curve of the BOES method in Fig.
shows that BOES usually finds the globally optimal variant
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different screening budgets.

in under 200 screened variants even when starting from a
different, non-functional variant in the GB1 sequence space.
The violin plots in Fig. [Tc|and Fig. [Id]illustrate the superiority
of our method further and show, that with increasing screening
budget, BOES gives an increasing lower bound on the probable
resulting fitness, whereas the other evaluated methods can
strongly underperform more often.

D. Ablation Study

Advantage of Embedding Space To evaluate the effect of
the informative input space on the performance of the BO
procedure, we compare our results to a method proposed in
[19] which, in its most simple form, performs BO with a

GP model and EI acquisition function directly in the protein
sequence space. The distance between two variants is com-
puted simply from one-hot encoding of the amino acids at
mutated positions. This approach corresponds to the proposed
BOES method in terms of the employed model and acquisition
function but uses a straightforward definition of the input space
and kernel function in place of the embedding space. This
makes the method an ideal candidate for evaluation of the
effect of the embedding space on the performance of BOES.
The average results of the SMW baseline, BOES method, and
the aforementioned method with one-hot encoding, denoted as
GP+EI, are included in Table[[} It is important to note that in
the GP+EI method from [19], the model is initially trained on



GB1 dataset | Avg maximum fitness | Screening budget
SMW 5.35 +2.14 191
GP+EIL 7.28 20 + 191
BOES 8.14 + 0.62 191

TABLE 1II: Comparison of BOES with BO conducted in
the original protein sequence space: Mean of the maximum
obtained fitness from multiple runs is reported. Results of the
implemented methods are accompanied by standard deviation.

GB1 dataset Avg maximum fitness | Screening budget
NaiveBO + GP 6.40 £0.79 40 + 50
TuRBO 6.57 4+ 1.02 40 + 50
BOES 6.47+1.15 50

TABLE III: Comparison of BOES to BO conducted with a
different informative sequence representation: Mean of the
maximum obtained fitness from multiple runs is reported with
the standard deviation.

20 randomly selected variants before the first iteration of BO,
which are not counted towards the screening budget, skewing
the comparison in its favor. One last note-worthy distinction
between BOES and the method reported in [[19] is that, unlike
BOES, this method selects new variants for screening in
batches of 19. Comparison in Table [[I] decidedly confirms a
positive effect of employing BO in the embedding space over
the original sequence space with a one-hot encoding-based
kernel function.

Other Informative Input Spaces The conducted compar-
ison to a BO-based method defined on the original sequence
space proves the positive effect of the innovative input space
qualitatively. However, a comparison to another state-of-the-art
BO-based method with a different, yet also informative, input
space can help assess the performance of the proposed method
quantitatively. The ODBO framework [20]] employs BO for DE
in combination with a novel encoding of amino acids based
on the fitness of observed variants with the specific amino
acids at the specified mutation position. In Table results
of the BOES method with a screening budget of 50 variants
are compared to a classical BO procedure with a GP model
and the positional amino-acid encoding of variants from [20]
and to a trust region BO procedure (TuRBO) [39]] with the
same model and encoding.

A critical difference between the two methods of sequence-
space representation is that the positional amino-acid encoding
proposed in [20]] requires an initial dataset of screened variants
in which each amino acid appears at each mutation site at least
two times, while the PPLM-extracted embedding space used
in BOES requires no screened variants for its construction.
The original paper presents a solution to this obstacle in the
form of an initial sampling algorithm, which for the GB1
dataset constructs an initial set of 40 variants. This means
that while each of the BO procedures compared in Table
is provided with a screening budget of 50 variants, the
construction of the encoding that precedes the two procedures
from [20] requires an additional 40 screening experiments,
which the BOES method saves in comparison.

Results in Table [[Tl] reveal that all three compared BO-based
methods produce proteins of extremely similar quality with
BOES outperforming the other classical BO method, labeled
NaiveBO, and the trust region variant slightly outperforming
BOES. It should be noted that a trust region variant of
BOES could also be implemented, which would most probably
improve the original BOES method’s performance. Similarly,
the authors of the compared BO method [20] propose two
additional improvements: prescreening outlier detection via
XGBOD [21] and employing a BO procedure robust to outliers
[40]. The variant of the authors’ method with these improve-
ments outperforms BOES, but the improvements could also
be combined with BOES. Adding the prescreening outlier
detection step requires a set of already screened variants.
To circumvent this, the outlier detection could be enabled
after a certain number of BOES iterations. Additionally, the
XGBOD method could be replaced with an unsupervised
outlier detection method in the initial iterations of BOES. A
version of BOES with the additional improvements from [20]]
can be expected to yield similar results to the full version of
ODBO [20] while saving screening costs on the construction
of sequence representation.

E. Visualizing the Embedding Space

The BOES method operates on a PPLM-extracted sequence
embedding space instead of using the raw sequences of amino
acids. It is crucial that the embedding space provides a sensible
metric of similarity between variants as well as encodes useful
information about the variants’ properties. To ensure that this
assumption holds, the embedding space was visualized with
dimensionality reduction methods.

First, a joint principal component analysis (PCA) was
conducted on sequence embeddings of all variants from both
datasets (GB1 and PhoQ) as a sanity check. The PCA con-
firmed that the two datasets are easily separable. The first
principal component alone accounts for 97.4 % of variance
in the joint distribution and separates the two datasets into
two clear clusters.

Next, PCA was conducted for each dataset separately to
visually confirm whether expected features of the sequence
space, like local maxima and distinguishable areas with
low/high fitness, are present in the embedding space. Results
of PCA in both of the datasets revealed that the first two princi-
pal components together explain roughly 40 % of the variance.
That is a very large portion, considering that the ESM-1b
embedding space has 1280 dimensions. The PCA analyses
of the standalone datasets both showed one large area with
functional variants. To assess whether the embedding space
is capable of capturing local maxima in fitness landscapes,
the embedding space of each dataset was visualized with the
t-SNE method, which emphasizes maintaining low distances
between close data points, preserving local clusters. The t-
SNE visualization is plotted in Fig. [2a] for the GB1 dataset
and in Fig. [2b| for the PhoQ dataset. Both figures confirm the
presence of local clusters of high-fitness variants.
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(d) t-SNE of PhoQ embedding space with predicted fitness.

Fig. 2: Visualisation of (a, ¢c) GBI and (b, d) PhoQ embedding space extracted with ESM-1b PPLM with (a, b) true fitness
and (c, d) fitness predicted by GP model trained on 384 screened variants in BOES run from the wild type protein.

F. Modelling the Embedding Space

As a secondary result, the fitness landscape modeled by the
BOES method was visualized alongside the initial t-SNE plots
in Fig. P} Fig. 2¢]and Fig. 2d| show fitness predicted by a GP
model trained on 384 screened variants by the BOES method
when initiated with the wild-type protein of the GB1 and PhoQ
datasets, respectively. The visualization of predicted fitness
shows that BOES was able to identify multiple local clusters of
high-fitness variants in both datasets. Especially the result on
the GB1 dataset in Fig. |[2c|reveals that almost all of the major
clusters were identified by BOES. High normalized discounted
cumulative gain (NDCG) values (GB1: 0.88, PhoQ: 0.79)
confirm that BOES effectively models the fitness landscape
to rank high-fitness variants, which is essential in MLDE.

VII. CONCLUSION

In this paper, we have presented a novel method of machine-
learning-assisted directed evolution (MLDE), termed Bayesian
optimization in embedding space (BOES). Feasibility of the

proposed method was confirmed in silico on two datasets. Our
method outperforms SOTA MLDE methods with a regression
objective. Moreover, the informative representation of the
input space based on the sequence embeddings extracted
by a pre-trained protein language model (PPLM) has been
shown to significantly improve the performance of Bayesian
optimization (BO) over optimization in the original protein
sequence space. The BOES method produces proteins of
comparable quality to other state-of-the-art BO-based methods
that employ different informative representations of the input
space while significantly reducing screening costs since there
is no screening needed within the construction of the sequence
representation. This improvement can result in saved resources
on experimental costs or more resources for additional iter-
ations of DE, yielding better results with the same amount
of conducted screening in total. For future development, we
suggest combining the innovative input space representation
proposed in this paper with the improvements to the standard
BO procedure suggested in [20]. We order the suggestions



based on their effect on the performance of the ODBO method
[20]. Firstly, conducting prescreening outlier detection via
Extreme Gradient Boosting Outlier Detection [21] in later
iterations. Secondly, implementing a BO procedure robust to
outliers based on [40] and finally, employing trust region BO
[39]I.
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