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Abstract

We demonstrate how some recently developed techniques
of set-level gene expression data analysis may be exploited
in the context of predictive classification of gene expression
samples for the tasks of attribute selection and extraction.
With four benchmark gene expression datasets, we empir-
ically test the influence of these method on the predictive
accuracy of constructed classification models in a compar-
ative setting. Our results mainly indicate that gene set se-
lection methods (SAM-GS and the global test) can boost the
predictive accuracy if used with caution.

1. Introduction

Set-level techniques have recently prevailed in the area
of gene expression data analysis [7]. Whereas in traditional
analysis approaches one typically seeks individual genes
differentially expressed across sample classes, the set-level
approach aims to identify entire sets of genes significant e.g.
in the sense that they contain an unexpectedly large number
of differentially expressed genes. The gene sets considered
for significance testing are defined prior to analysis, using
appropriate biological background knowledge. For exam-
ple, each considered gene set may contain genes acting in
a given cellular pathway. The main advantage brought by
set-level analysis is the improved interpretability of anal-
ysis results. Indeed, long lists of differentially expressed
genes characteristic for traditional expression analysis are
replaced by shorter lists of more informative units corre-
sponding to entire biological processes.

Predictive classification is a form of data analysis going
beyond the mere identification of differentially expressed
units. Here, units deemed significant for the discrimination
between sample classes (e.g., heathly and ill) are assembled
into formal models prescribing how to determine the class
of new samples whose class labels are so far unknown. Pre-
dictive classification techniques are thus especially relevant
to diagnostic tasks and as such have been explored since

very early studies on microarray data analysis [4]. Predic-
tive models may take diverse forms. A class of predictive
models with an especially notable track record in expres-
sion data modeling is known as support vector machines
[9]. Another family of techniques aims at making the re-
sulting models instantly readable by a human. Here, models
acquire forms such as decision trees or logical rules [2].

The combination of set-level techniques with predictive
classification has not yet been thoroughly explored. In our
recent study [5] we have demonstrated that the set-level ap-
proach enables to construct predictive models applicable to
expression samples assorted from diverse microarray plat-
forms. However, the set-level strategy carries even a more
direct promise for predictive classification. We hypothesize
that it will reduce the risk of overfitting, a well known prob-
lem in expression data classification. Overfitting denotes
the effect where a model classifies training samples (i.e., the
samples available for guiding the construction of the model)
accurately, but fails to accurately classify previously unseen
samples. The risk of overfitting grows with the number of
sample attributes, that is, the variables for which the sample
provides values. Thus a straightforward way to mitigate the
risk is to reduce the number of attributes provided that rele-
vant information is not lost as a consequence. We speculate
that replacing the original attributes corresponding to genes
by attributes corresponding to gene sets (whose amount is
typically much smaller) will provide exactly such a reduc-
tion. Testing this hypothesis is the first goal of the present
paper.

Furthermore, recent developments in set-level analysis
of gene expression data have yielded techniques which, as
we show here, are directly exploitable in the process of pre-
dictive model construction. One family of such methods
aims at detecting gene sets significant for the discrimina-
tion between sample classes. State of the art representatives
of this family are the SAM-GS algorithm [1] and a method
known as the global test [3]. Relying on these methods, the
classifier construction algorithm can be forced to focus on
gene sets actually relevant to the discrimination task rather
than consider all available gene sets in the process of build-



ing a classifier. Here, we intend to test how the final classifi-
cation accuracy is influenced by the choise of one of the two
mentioned algorithms for gene set pre-selection. In addi-
tion, we test the influence of these methods also in the gene
based (rather than gene set based) setting, where attributes
correspond to genes occurring in the gene sets selected by
the respective methods.

By definition, each attribute must carry an unambigous
value for each data sample. When attributes are genes, as
in the traditional approach, the value is simply the (normal-
ized) measured expression of the gene corresponding to the
attribute in the given sample. When attributes are gene sets,
as in the set-level approach, a question arises as to how to
establish a value for each gene set and sample. In [5] we
simply assigned the average of expressions of the genes
contained in the given set. A more sophisticated method
based on the statistical technique known as singular value
decomposition was proposed by [8]. The final contribu-
tion of this study is in testing the whether the utilization
of the latter technique improves the ultimate classification
performance when compared to the former approach based
on simple averaging.

The rest of the paper is organized as follows. The next
section describes the specific methods and data sets used in
our experiments. In Section 3 we expose the experimen-
tal results. Section 4 summarizes the main conclusions and
proposes directions for follow-up research.

2. Methods and Data

Here we first describe the techniques adopted initial pro-
cessing of expression sample, i.e., for selecting significant
gene sets to act as sample attributes, and for determining
the values of these attributes. When attributes are selected
and instantiated, predictive models can be constructed; the
methods employed for this sake are reviewed subsequently.
Next we describe the data sets used as benchmarks in the
comparative experiments. Lastly, we explain the protocol
followed by our experiments.

2.1 Gene Set Selection

Two methods are considered for gene set selection, both
of which have been proposed recently to avoid some sub-
stantial deficiencies of the previously popular technique of
gene set enrichment analysis [7]. As inputs, both of the
methods assume a set G of n interrogated genes, and a
set S of m expression samples where for each si ∈ S,
si = (ei,1, ei,1, . . . ei,n) ∈ Rn where ei,j denotes the (nor-
malized) expression of gene j in sample i. The sample set
S is partitioned into classes S = C1 ∪C2 ∪ . . .∪Co so that
Ci ∩ Cj = {} for i 6= j. For simplicity in this paper we
assume binary classification, i.e. o = 2. A further input is a

collection of gene sets G such that for each GS ∈ G it holds
GS ⊆ G. As the output, each of the two methods ranks
all gene sets in G by their estimated power to discriminate
samples into classes. Subsequently we take the first k top-
ranking gene sets (we namely consider the cases k = 1 and
k = 10).

The specific methods used to obtain the ranking are the
global test [3] and the SAM-GS technique [1]. Here we give
a brief informal description of these methods and refer to
the original sources for a rigorous treatment. Each sample
si is viewed as a point in an n-dimensional Euclidean space.
Each gene set GS ∈ G defines its |GS|-dimensional sub-
space in which projections sGS

i of samples si are given by
coordinates corresponding to genes in GS. Both methods
judge a given GS by how distinctly the clusters of points
{sGS

i |si ∈ C1} and {sGS
j |sj ∈ C2} are separated from

each other in the subspace induced by GS. SAM-GS mea-
sures the Euclidean distance between the centroids of the
respective clusters and applies a permutation test to deter-
mine whether, and how significantly this distance is larger
than one obtained if samples were assigned to classes ran-
domly. The global test rather proceeds by fitting a regres-
sion function in the subspace, such that the function value
acts as the class indicator. The degree to which the two clus-
ters are separated then corresponds to the magnitude of the
coefficients of the regression function.

2.2 Gene Set Value Assignment

Two methods are considered for the sake of assigning a
value to a given gene set GS for a given sample si. The
first is a baseline method adopted from [5] which simply
produces the average of the expressions of all GS genes in
sample si. The value assigned to the pair (si, GS) is thus
independent of samples sj , i 6= j.

A more sophisticated approach was proposed in [8].
Here, the value assigned to (si, GS) depends on other sam-
ples sj . In particular, all samples in the sample set S are
viewed as points in the |GS|-dimensional Euclidean space
induced by GS the same way as explained in Section 2.1.
Subsequently, the specific vector in the space is identified,
along which the sample points exhibit maximum variance.
Each point sk ∈ S is then projected onto this vector. Fi-
nally, the value assigned to (si, GS) is the real-valued posi-
tion of the projection of si on the maximum-variance vector
in the space induced by GS. Again, we refer to [8] for de-
tailed explanation.

2.3 Predictive classification

In all experiments, the support vector machine [9] clas-
sifier type was used. This choise was motivated by the pre-
vailing use of this classifier type in the area of gene expres-



Dataset Genes Class 1 Class 2
heme/stroma 13380 18 33
brain/muscle 13380 41 20

diabetes 13380 17 17
p53 10101 33 17

Table 1. Number of genes interogated and
number of samples in each of two classes of
each benchmark dataset.

sion data modeling. In each experiment, a particular clas-
sifier was constructed from training data through the SMO
algorithm implemented in the public machine-learning soft-
ware suite WEKA [10].

2.4 Datasets

We conduct our experiments using four public datasets,
each containing gene expression samples pertaining to two
classes. To avoid bias, we deliberately combined two ‘easy’
datasets (the first two) where phenotype classes are very dis-
tinct with two ‘difficult’ dataset where the separation is less
straightforward. Table 1 shows, for each dataset, the num-
ber of samples in each class and the number of interogated
genes.

Classes in the first dataset (heme/stroma) correspond
to blood-forming (hematopoietic) and supportive (stromal)
cellular compartments in the bone marrow, respectively. In
the second dataset (brain/muscle) contains samples from
skeletal muscle and brain. All samples in the first two
datasets were manually collected from the NCBI gene ex-
pression omnibus database.

The third dataset (diabetes) come from [6]. From the
original dataset, we extracted a two-class subset. The first
class corresponds to patients with diabetes mellitus 2 and
the second class pertains to healthy patients. The last
dataset (p53) is adopted from [1] and contains expressions
for 50 cell lines from the NCI-60 collection of cancer cell
lines, for which mutational status of the p53 gene has been
reported, divided into the wild-type class and a class con-
taining cell lines carrying mutations in the gene.

In all experiments we work with a single family of gene
sets. All of them are sets of genes acting in respective cel-
lular pathways. The gene sets are fully taken from the study
[1].

2.5 Experimental Protocol

Our criterion to evaluate a particular combination of
gene set selection and value assignment method is the pre-
dictive accuracy (i.e., the proportion of correctly classified

Partition the input sample set S into 10 folds
f1, f2, . . . fn of equal size such that the class-proportion
is (approximately) equal in all folds.
for i = 1, 2, . . . 10 do
Strain ← S \ fi
Stest ← fi
Select n top-ranking gene sets on Strain

Construct a classifier C with Strain using the selected
gene sets
Ai = classification accuracy of C on Stest

end for
return Average of A1, A2, . . . A10

Figure 1. A skeleton of the stratified cross-
validation procedure used to obtain accuracy
estimates for on a single sample set.

samples) achieved on the benchmark datasets by that com-
bination. To estimate predictive accuracy, we use the stan-
dard procedure of 10-fold stratified cross-validation. The
specific steps conducted to estimate the accuracy for a sin-
gle benchmark dataset is shown in Fig. 1. To preserve
methodological correctness, the process of gene set selec-
tion is embedded inside the cross-validation loop along with
the classifier construction step. In other words, gene sets are
selected only on the training splits rather than on all data.
The final accuracies used to rank the individual combina-
tions of methods are further averaged over all 4 benchmark
domains, that is, they are averages over 40 experiments.

The algorithm in Fig. 1 has 4 degrees of freedom acco-
modating the various combinations of methods to be tested.
In particular, the gene set selection step is either conducted
by the global test method or the SAM-GS method, as de-
scribed earlier. Variable n is either instantiated to 1 or 10.
The classifier construction step is either performed with at-
tributes corresponding to all genes found in the selected
gene sets, or with attributes corresponding to the gene sets
themselves. In the latter case, the attributes are assigned
values by one of the two earlier described methods of value
assignment. Alltogether, we test 12 different combinations
of methods. These combinations are enumerated in Table 2
(exclude columns 1 and 6, and line 8).

Additionally, we also estimate the accuracy of the base-
line method, where a classifier is constructed with attributes
corresponding to all genes present in the original sample
representation, i.e. no gene set selection is performed at
all. This accuracy is also estimated via 10-fold stratified
cross-validation and futher averaged of all four benchmark
domains.



3. Results

A preliminary question that should be addressed before
we investigate the particular ranking of methods is whether
at all there is a clear influence of the gene set selection
method on the final classification accuracy. To this end,
the diagram in Fig. 2 plots the cross-validated accuracies
achieved with a single selected gene set as a function of
the rank of the gene set produced by the gene set selection
method. To obtain such an accuracy estimate for gene set
rank r, the step “Select n top-ranking gene sets” in Fig. 1
is replaced by “Select one gene set ranking r-th, and the
algorithm is run for all combinations of methods and all 4
benchmark datasets, averaging the resulting estimates. The
diagram shows a clear trend of accuracy falling as the gene
set rank increases, i.e. the estimated class-discimination
power of that gene set drops.

In Fig. 3 we also show the average number of genes
in a gene set in dependence on the rank of the set. These
quantities are also averaged over cross-validation folds, all
combinations of methods and all four datasets. This fig-
ure is shown to illustrate i) the degree of attribute compres-
sion incurred by changing sample representation from gene
attributes to gene set attributes, and ii) the number of at-
tributes used for classifier construction in cases where at-
tributes correspond to genes. Any trends possibly observed
in the shown dependency are not of interest in our study.

Finally, Table 2 provides the ranking of all 13 tested
combinations of methods according to the estimated pre-
dictive accuracy. The Attrib column indicates whether se-
lected gene sets (‘sets’) or genes extracted from the selected
gene sets (‘genes’) were used as attributes to describe sam-
ples. The # Sets column denotes the choice of the n param-
eter in Fig. 1. The # Select column captures the employed
gene set selection method. In Column Assign, the method
for gene set value assignment is listed, where AVG corre-
sponds to simple averaging used in [5] and SVD stands for
the method proposed by [8]. The final column shows the
estimated predictive accuracy.

The principal trends observed are as follows.

• Methods based on the selection of 10 best gene sets
systematically outperform the baseline method, indi-
cating the positive influence of the gene set selection
process performed prior to classifier induction.

• Conversely, relying only on the 1 top-ranking gene set
leads to poor predictive accuracies, indicating that a
single selected gene set does not capture enough infor-
mation for to induce a reliable classifier.

The ranking obtained is however inconclusive in terms
of the following comparisons:

• the two considered methods for gene set selection

Figure 2. Average predictive accuracy tends
to fall as lower-ranking gene sets are used to
constitute attributes (see text for details).

Figure 3. Average gene set size as a function
of gene set rank.



Rank Attrib # Sets Select Assign Acc
1 sets 10 SAM-GS SVD 90.45
2 genes 1 GLOBAL n/a 84.74
3 sets 10 SAM-GS AVG 84.18
4 sets 10 GLOBAL AVG 84.08
5 sets 10 GLOBAL SVD 83.21
6 genes 10 GLOBAL n/a 82.25
7 sets 1 GLOBAL SVD 81.08
8 baseline n/a n/a n/a 80.3
9 genes 10 SAM-GS n/a 80.08
10 sets 1 SAM-GS AVG 78.91
11 genes 1 SAM-GS n/a 78.35
12 sets 1 SAM-GS SVD 67.12
13 sets 1 SAM-GS AVG 60.87

Table 2. Final ranking of all combinations of
methods in terms of average predictive accu-
racy (see text for details).

• the two considered methods for gene set value assign-
ment

• whether selected gene sets, or genes extracted from the
selected gene sets are used as attributes

4. Conclusions and Future Work

Our experimental findings support our initial hypothesis
that methods recently developed for gene set selection can
be used with benefits to improve predictive accuracy of gene
expression sample classification by providing a relevant at-
tribute set to which the classifier constructor is constrained.
This conclusion is however not valid in the extreme case
where one only relies on a single top ranking selected gene
set. In this case, the predictive accuracy actually drops,
indicating that a single selected gene set does not capture
enough information for to induce a reliable classifier.

Our experiment however did not provide conclusive an-
swers to our further questions regarding the mutual ranking
of the two considered gene set selection methods (SAM-
GS [1] and the global test [3]) and the two gene set value
assignment methods (averaging [5] and singular value de-
composition [8]).

A further survey performed on a significantly larger col-
lection of gene expression benchmarks is needed to answer
the questions left open. Such a study consitutes our next
research steps.

We believe that our present study, albeit preliminary,
represents the first steps towards the important goal of de-
termining how the recently developed methods of set-level

based gene expression data analysis can contribute to tasks
of predictive classification. Getting such an insight is sig-
nificant mainly due to the direct relevance of predictive data
modeling tasks to clinical diagnosis procedures, and thus
- in the longer term - to the proliferation of personalized
medicine.
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