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Abstract Continuous improvement of pharmaceutical man-
ufacturing operations has not evolved at the same rate as it
has in other industries. Although time-series data are
routinely collected as part of equipment control systems,
the data are usually not thoroughly evaluated. This article
investigates batch data, in-process and release laboratory test
data and time-series data from granulation, fluid-bed drying
and coating operations in an effort to determine which
parameters are most critical to the dissolution of a matrix-
release, solid oral dosage form of a poorly soluble drug.
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Introduction

The scope of this study was to analyze historical process data
associated with a modified-release, solid oral tablet manufac-
turing process. Production data from 211 lots of drug product,
covering more than 140 parameters were collected. The goals
of the study were to identify critical process parameters
(CPPs) from the historical data and to determine which
modelling technique best applies for this type of dosage form.

Several automatic parameter selection and ranking methods
were applied in order to obtain a list of CPPs influencing the
tablet dissolution rates. During consequent modeling, the
influence of CPPs was thoroughly analyzed first, and then used
to predict the dissolution rates; the methods included empirical
models, regression tree models and autoregressive models.

The correlation-based feature selection (CFS) method,
used for CPP ranking, yielded results most consistent with
the existing engineering understanding of the process. This
method was identified as the best for automatic ranking of
parameters based on their respective impact on dissolution
rates. The presented results demonstrate that the long-term
variation in the dissolution rates for a modified-release tablet
are caused by granulation process conditions, external
ambient conditions and raw material properties. The predic-
tive mathematical models that were used provided accurate
and reliable predictions of dissolution, based on data available
early in the production cycle.

Understanding the impact of individual process parameter
variation on critical product properties, such as dissolution
rate, leads to the following opportunities for process
understanding and control:

* Process modeling and predictions of key product
properties;



J Pharm Innov (2007) 2:6-17

* Real-time control of key product properties;
* Optimization of manufacturing processes.

Control of dissolution rates for a sustained-release
product can often be challenging. Numerous articles have
been published on traditional process variables that affect
the dissolution performance of immediate and sustained-
release dosage forms [1-12]. The aim of this work was to
determine if a deeper understanding of dissolution might be
possible by analyzing all available raw material properties,
process parameters and external environmental conditions.
In addition, it is desirable to know which attributes are
worthy of further study, either through tighter monitoring or
through active experimentation with statistical experimental
designs.

Examples of investigated attributes include:

* Temperature and humidity conditions outside a facility
that are both temperature and humidity controlled;

* Impurities in excipients and drug substance;

*  Process parameters such as granulation power and time,
and mean and maximum drying temperatures, tablet
coating conditions including temperature and airflow
rates;

» Traditional process parameters such as tablet hardness
and drug substance particle size.

Experimental
Description of Manufacturing Process

The formulation consists of drug, sustained-release polymer
and other standard manufacturing ingredients. The manu-
facturing process consists of high-shear, wet granulation,
fluid-bed drying, milling, final blending with all remaining
ingredients, including magnesium stearate, and compress-
ing and coating. The coating is non-functional.

Summary of Process Variables Investigated

Historical data for more than 140 raw materials, environ-
mental and process parameters were obtained from 211 lots
of product. This includes 1,688 granulation sub-runs (8 per
lot), 1,055 coating sub-runs (5 per lot) and ~8,000 disso-
lution tablet tests.

If more than one lot of a raw material was used in a
batch during manufacture, raw material attributes were
calculated by taking the weighted average from each lot of
each raw material property, as calculated from the bill of
materials for that lot and raw material test data.

Process parameters, in-process testing and release testing
data were obtained (and if necessary, calculated) from the
electronic data warehouse.

External air temperature, dew points, relative humidity
and precipitation data were obtained from a local National
Weather Service station.

Interviews with subject matter experts were conducted in
the production facility. The purpose of these interviews
was:

» To obtain a detailed description of the unit operations,
equipment, and operator interfaces;

* To identify the ‘obvious’ information, routine opera-
tional issues;

* To collect important information from operators with
practical experience in running the process;

* To collect additional detail from process experts (expert
knowledge represents additional data in the form of, for
example, ‘if...then...else’ rules);

» To identify key points of interest and expectations from
individual stakeholders.

See Table 1 for a partial list of analyzed raw material
parameters and process conditions, and Table 2 for
parameter counts.

Data Pre-Processing—Purpose and Methodology

The objective of pre-processing is to bring together the data
representing different manufacturing phases to analyze and
model potential relationships. During pre-processing, data
from various sources and formats is converted into one
electronic data file in a standard format so that it is possible
to identify the CPP using mathematical software tools.

The data sources used for this analysis consisted of batch
processing data (from electronic batch records), laboratory
test data (in-process and release testing), time-series data
obtained from the facilities data historian, and information
from subject matter experts.

Normalization of data was accomplished by taking the
weighted-average for each raw material attribute or process
parameter for each batch and dividing by its standard
deviation. In this way, it is possible to estimate the effect
across many variables. Moving-average filtering was used
to reduce the effect of random measurement errors on the
CPP analysis.

The first step in data pre-processing is to convert data from
the individual sources, such as MS Excel, text files and paper
records, into database tables. MS ACCESS was used to
generate the tables containing the individual manufacturing
phases and weather data and relate them to the dissolution
data. The goal of this step is to understand the manufacturing
process and identify ‘obvious’ CPP with respect to drug
release in terms of single-dimensional analysis. This process
is often referred to as pre-identification. The data can be
aggregated either by SubRuns (granulation or coating Sub-
Runs) or ProdRuns (individual production lots).

@ Springer
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Table 1 List and description of Release rate parameters

selected parameters referenced

Description

in the analysis Parameter Units
R30 %
R45 %
R60 %

Drug release (%) after 30min
Drug release (%) after 45min
Drug release (%) after 60min

Selected raw material, process and environmental parameters

SRA X °C
Outside Air Temp °C
Outside Air Dew Point °C
Outside Air Pressure PSI

Precipitation Inch
130 other parameters were ana- Water_Addition Liters
lyzed with respect to release IngrBulkVolume Liters
rates. These parameters were AvgOfGPower max kW
identified as less significant TDiff disp_release oc
during the CPP ranking process -
and were not listed in this table.
The unlisted parameters were
not identified as critical. API repr N/A

Sustained releasing agent material property

Ambient air temperature (local airport)

Ambient air dew point (local airport)

Atmospheric air pressure (local airport)

Daily average precipitation (local airport)

Total water added per production run during granulation

Bulk volume of one standard manufacturing ingredient

Average of maximum power applied during granulation, per lot

Maximum minus minimum temperature differential over period of
time elapsed between raw material dispensing and laboratory testing
for dissolution (per lot)

Drug substance property

Second, all tables are joined using structured query
language (SQL) to generate a source database. This table
(database or matrix) aggregates the data by individual lots
with the data available because this is the only common
unit that appears in all the manufacturing steps.

Next, the resulting tables are exported into an arbitrary
analytical and modeling software package such as MS Excel,
MATLAB or WEKA. MS Excel, a well-known spreadsheet
tool, was used for basic data manipulation and data sharing.
The MATLAB product family provides a high-level
programming language, an interactive technical computing
environment and provides algorithm development, data
analysis and/or visualization and numeric computation.
WEKA [13] is a collection of machine learning algorithms
for data mining tasks implemented in Java; WEKA contains

Table 2 Summary of process parameter counts for raw materials,
environmental process and other conditions

Unit operation Number of variables

Dispensing 35
Granulation 12
Drying 8
Blending 9
Compressing 14
Coating and coating prep. 15
Other parameters

Weather 25
Hold times (lot time duration) 5
Release 9
Miscellaneous 9
Total number of variables 141

@ Springer

tools for data pre-processing, classification, regression,
clustering, association rules and visualization.

The global data analysis focuses on numerical parame-
ters. The data regarding operators is challenging to analyze
because each lot (ProdRun) is affected by the number
(typically more than ten) of operators. The operator ID data
has been analyzed in terms of single-dimensional analysis
for each unit operation. The analysis has not shown
dependence of release rates on the actions of any specific
operator, groups of operators or shifts of operators.

The parameters that do not change within the analyzed
time period have been removed.

Methods and Tools

The main goal of the study is to better understand the
manufacturing process and consequently improve the
control of critical product properties. This goal is broken
down into two consecutive steps: CPP identification and
understanding of the production operations; and quantifi-
cation of how the analyzed process parameters influence
the target product properties.

In terms of general methods, we speak about feature
selection and modeling. The following section describes the
methods that were used.

Identification of CPP—Feature Selection

CPP identification can be defined as a problem of ‘feature
selection’, one of the central issues in machine learning or
statistics. The main goal of CPP identification is to find a



J Pharm Innov (2007) 2:6—17

set of parameters that have a strong influence on a target
variable (e.g. dissolution, uniformity or yield). The feature
selection procedure reduces a set of features to eliminate
redundant, irrelevant or noisy features that do not help to
increase classification or the prediction accuracy of a con-
structed model. The models strive to classify or predict the
target variables (e.g. dissolution rates), whereby preliminary
feature selection results in better model performance and
reduced computation. The approach used in the CPP identifi-
cation effort is described as follows: first, attempt to construct a
model that best fits the target variable using a selected feature
selection technique; second, a CPP becomes a feature, selected
to be influential with respect to the model performance.

Feature selection techniques can be categorized according
to several criteria. Bias criterion refers to whether the
learning bias is guided by feedback from the learning
algorithm performance or whether it is, instead, a preset bias
that uses general characteristics of the data and operates
independently of any learning algorithm. The first method is
referred to as the “wrapper’ approach; the second method is
often being referred to as the ‘filter’ approach [14]. A
different taxonomy divides algorithms into those that
evaluate and rank individual features and those that evaluate
subsets of features. Many feature selection techniques handle
regression problems, that is they deal with numeric target
variables. The target variables in our domain are entirely
numeric and, therefore, we focused on these techniques.

The simplest way to identify a CPP is to apply a filter
approach using correlation as the underlying feature score
function. In this approach, correlations between the target
variable and all the parameters (features) are calculated; then,
the features with the strongest correlation to the target
variable are assumed to be CPP. The disadvantage is that it
considers linear dependence only and does not account for
mutual interactions between the investigated features. For
example, the data suggest that weather conditions strongly
influence dissolution; however, when another parameter is
also influenced by weather it can easily appear that this
parameter is also critical when it might have no actual
connection to release. This correlation is often referred to as
spurious. It should be noted that the primary cause might also
be missing in the collected set of parameters.

Therefore, it is better to evaluate all subsets of features.
Correlation-based feature selection (CFS) applies subset
evaluation heuristics [14] (M.A. Hall, PhD thesis, Waikato
University, 1998) and takes into account both the useful-
ness of the individual features for predicting the target
variable and the level of intercorrelation between them. The
heuristic approach prefers subsets that tend to correlate
highly with the target variable despite having low intercor-
relation between the individual features. Similarly, it is
possible to use a linear learning algorithm within the
wrapper framework.

A specific implementation of this approach is used in
this project, and can be simplified in the following
steps:

(1) Build and test all single variable linear models;

(2) Select the best model, that is the model that best fits
the target function;

(3) If the model meets the target condition, then stop—the
features in the model are CPPs and the target condition
has been met;

(4) Attempt to add another feature into the best model,
testing all features that are outside the model;

(5) Go to step (2).

The target conditions can vary according to the needs of
the user. The first typical condition is the number of
features used in the best model—the user determines the
number of features to be selected a priori. The second
typical condition is based on model performance—the
features are added until the target performance is reached
or until it improves sufficiently.

The following example demonstrates model develop-
ment according to the previous implementation protocol.
First, consider Release30 as the target function and begin
by searching for two (2) CPPs out of one hundred and forty
(140) features:

(1) R30=x11xAPI repr+x12,
(2) R30=x21xOutside_Air_Temp-+x22, etc.

where x11, x12, x21 and x22 are constants optimized by
regression analysis; API repr is a drug substance property
and Outside Air Temp is the average temperature during
lot processing.

These parameters are 2 of 140 analyzed features; the
number of models corresponds to the number of features,
that is 140 models are built in this step.

Mean squared error is then used as the selection
criterion. Assuming that model (2) is the best.

Outside_Air_Temp is the first CPP; therefore, the search
for the second CPP can be initiated:

(1) R30=yl1xOutside Air Temp+yl12xAPI repr+yl3,
(2) R30=y21xOutside_ Air Temp+)22 xHardness+y23,
etc.

The number of models corresponds to the number of
features, in this case 139 models are built in this step.
Outside Air Temp appears in all the models.

Assuming model (2) be the best, the two most important
CPPs have been identified: Outside Air Temp and (tablet)
Hardness.

The previous example illustrates the use of the algorithm
with two actual parameters. A detailed overview of identified
CPP can be found in the “Results and Discussion” section.

@ Springer
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Although the algorithms mentioned above can deal with
the feature dependence, they are limited in that they are
linear. Within this CPP identification effort, the authors
analyzed parameters that were controlled during the manu-
facturing process and, therefore, only small perturbations
appear in the majority of the features. It can be assumed that
the linear approximation can fit the data dependencies well
within the provided ranges of variation. Nevertheless, the
dependencies do not have to be always truly linear.

The RReliefF [15] method provides an algorithm for
dealing with nonlinearities that stems from the filter-based
Relief algorithm. The key idea of the original Relief algorithm
[16] is to estimate the quality of features according to how
well their values distinguish between the instances that are
near to each other. For that purpose, given a randomly selected
instance (R), Relief searches for its two nearest neighbors: one
from the same class, called nearest hit /, and the other from a
different class, called nearest miss M. It updates the quality
estimation for all the features depending on the values for R,
M, and H. The goal is to minimize R—H distance and
maximize its R—M counterpart. The process is repeated m
times, where m is a parameter of the method.

Relief cannot be applied to regression tasks directly. Its
essential disadvantage is the need for discretization of both
continuous features and the target function. Consequently,
all values within a given interval are treated as equal, which
will result in a loss of information. RReliefF is a
modification of the original algorithm that overcomes this
bottleneck [16]: R refers to regression domains, and the
final (F) stands for use of more hits and misses (neighbors)
for each instance. RReliefF generates a feature ranking. In
the CPP identification effort, this model is run more times
with various random sampling of the original set of
instances. The final output is then an average rank of each
feature, and CPPs are those features with the lowest average
rank. WEKA implementation of this approach, as used in
this analysis, can be simplified as follows:

(a) Initiate a set of feature importance weights to zero;
(b) Repeat for m times (m is an algorithm parameter):
randomly select an instance R; (i.e. a ProdRun);

(c) Select k instances I}, j=1. k, nearest to R; (i.e. find such
ProdRuns whose feature description best agrees with
R)).

For all the features to be assessed do the following:

(d) Repeat for all /; and study whether the feature value in
R; and I; changes in accordance with changes of the
target value;

(e) If so, increase the feature importance weight (and vice
versa);

(f) Use the feature importance weights to generate a
feature ranking.

@ Springer

Mutual information (MI) [17] is an alternative that can
replace the correlation measure. MI is a natural measure of
the dependence between random variables and it is
equivalent to the well-known Kullback—Leibler divergence
between the joint density and the product of its marginal
densities, a natural measure for independence. It is always
non-negative and zero if, and only if, the variables are
statistically independent. Thus, MI takes into account the
whole dependence structure of the variables and not only
the covariance, as does principal component analysis (PCA)
and related methods. MI can also be used in the CFS
algorithm, where correlation and intercorrelations are
replaced by the measure of mutual information.

Modeling

In general, modeling follows two objectives—prediction
and description [18]. The predictive models are used to
predict future values of a target variable, their ultimate goal
being the accuracy of the prediction. The descriptive
models capture the relationships among variables and serve
mainly to explain relationships among the target variable
and parameters (independent variables). In the CPP project,
both accurate prediction and description were two separate
objectives. The following subsections discuss several
different ways to acquire descriptive and predictive models
and to model evaluation methods.

Descriptive Models

One of the main goals in manufacturing is to control actively
and accurately the target variables. To achieve such control,
the influence of the individual parameters on the target
variable must be thoroughly understood. This is the main
reason why we emphasize the need for simple and, thus,
understandable descriptive models that deal with a few
parameters only. The selected parameters used for modeling
result from the feature selection procedures already described.

Initially, the linear models with empirically acquired
constants were used to describe relationships demonstrated
in the historical datasets. These models use limited sets of the
top-ranked CPP for modeling. The main goal of building the
models is to understand to what extent the most critical
parameters influence the target variables. In this text we refer
to this class of models as empirical models.

A regression tree model might be considered a variant of
decision trees [19], designed to approximate real-valued
functions instead of being used for classification tasks.
Regression trees differ from decision trees mainly in having
values rather than class labels at the leaves. Another variant of
regression trees, also referred to as model trees [20], builds
multivariable linear models at the leaves. These model trees
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are thus analogous to piecewise linear functions. The model
trees can deal with both discrete and continuous parameters,
first separating the input space into characteristic regions and
then building independent linear models representing the
given regions. Consequently, the resulting tree can identify
and truly approximate potentially complex, non-linear rela-
tionships. Complex regression trees can serve as predictive
models. For this study, the authors restricted the input set of
parameters and also branching of the tree to obtain simple
trees. The trees were used mainly as a descriptive tool.

The authors also attempted to classify some process
variables using fuzzy sets. Using fuzzy modeling, values of
each parameter are classified into sets, typically high, medium
and low. If-then-else rules are then applied to quantify (model)
the relationships, for example, if Outside Air Temp = high,
then R30 = high. These qualitative rules help understand the
principal dependencies within the dataset.

Predictive Models

Predictive models can help the manufacturer react immedi-
ately when the target variable is drifting or likely to drift
outside of the desired range, so that the manufacturing
process can be stopped or adjusted in such a situation. A
typical example of predictive modeling is the use of
complex multivariate models, of which neural networks
(NN) [21] and support vector machines (SVM) [22] are
well-known examples. The main disadvantage of these
methods is that they provide only minimum insight into the

Fig. 1 Raw data for dissolution

underlying relationships. One risk of developing a model
using a relatively small number of data points (one season,
211 production runs) and a large number of parameters is
overfitting. Additionally, prediction of target variable
values outside of the rather narrow range of process
variation achieved in one season is not acceptable.

A single production lot does not have to be considered as
an independent experiment. Instead, the development of the
target variable over lots can be understood as a time series.
Forecasting in time series is a common exercise and
different approaches have been investigated during the
years [23]. The main attention was devoted to linear models
for which the theory is known and many algorithms for
model building are available. The most used linear
regression methods have been the autoregressive (AR)
and autoregressive moving average (ARMA) models [24].
An example of a more complex regression method is the
multivariate adaptive regression splines [25]. In addition, a
large number of nonlinear time series models are available.
The stochastic approach to nonlinear time series that can fit
nonlinear models to time series data is described in [26].

The predictive models presented in the following text are
linear autoregressive models that combine both the CPP
and the previous values of the target variable.

Evaluation of the Models

When evaluating descriptive models, both their lucidity and
fidelity are considered. Because the lucidity is a highly

rates a R30, b R45, ¢ R60 and a c
d R120 as measured. At least six 100
tablets were tested per coating
SubRun; more measurements 80 o
were available for re-tested 8 ©
SubRuns. The total number of 2 60 ?
data points is approximately s E
8,000 © g

o 40

20
0 2000 4000 6000 0 2000 4000 6000
SubRun SubRun
b d
1% 1O st

© ‘8_ 80

@ ©

2] 7]

g g 60

o <

- 2 40

20 20
0 2000 4000 6000 0 2000 4000 6000

SubRun

SubRun

@ Springer



12

J Pharm Innov (2007) 2:6-17

subjective criterion, the preferred structure of the descriptive
models was discussed with the project team. The predictive
models concern mainly the objective performance criteria
such as mean absolute error (MAE) or relative standard
deviation (RSD) [21].

All the predictive models have been trained and evaluated
on independent training and testing sets of examples that
avoid an optimistic bias in estimation of their performance.

Results and Discussion
Data Summary

Figure 1 reports the individual test results (percent released)
for dissolution at each of the tested time points. The data
includes all 8,000 data points that were tested. The two
notable features are a large curve from data point 1 to
~5,500, and an increase in release rate from data point
6,000 onward. The exact reason for these two fluctuations
was not known at the time of the analysis. The dissolution
rates at 30 and 45min were analyzed with respect to all raw
material, environmental and process parameters, to deter-
mine that the notable phenomena in Fig. 1 were due to
variation in ambient conditions and raw material properties.
Figure 2 is representative of the 30 min dissolution data,
exhibiting average values for each coating SubRun,
standard deviation and relative standard deviation. The
observed variability in dissolution rate is characteristic.

Fig. 2 a Raw data as measured

CPP Ranking

This section gives an overview of CPP for Release target
variables. The top parameters selected by CFS and RReliefF
are shown in Table 3. The feature selection has proven that
various types of parameters influence Release. Both methods
more or less agree in their top identified CPP: they identify
the tablet hardness as the most important parameter. All the
ambient weather conditions significantly influence Release
but because they are also heavily mutually dependent, only
one representative is proposed for this set of parameters by
both feature selection methods. CFS picks the air tempera-
ture, whereas RReliefF prefers the air pressure.

Ambient air temperature (Outside Air Temp) was further
used as the representative parameter in empirical modeling
(Model 1). By comparison, ambient air dew point (Out-
side Air Dew Point) was also used as an alternate repre-
sentative parameter to build a similar empirical model
(Model 2). See Table 4 for model accuracy evaluation and
Figs. 3,4, 5, 6, 7, 8 for parameters used for modeling and
for graphical illustrations of empirical modeling results.

Model Building and Dissolution (Release) Rate Modeling
Summary

This study shows the impact of the most significant
parameters on dissolution rates. The effectiveness of
various models for predicting release rate has been
evaluated.
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Table 3 List of CPP for release determined by two different sets of
methods

CFS methods RReliefF

Hardness Hardness

Outside Air Temp Outside Air Pressure
SRA X TDiff disp_release
Precipitation AvgOfGPower max
IngrBulkVolume SRA_X

Sufficient variation was found in the data for R30, R45
and R60 (Table 1) to attempt modeling these variables
using other data. Empirical models, regression tree models
and predictive models were used to demonstrate that these
variables can be modeled with impressive accuracy. The
predictive models in this article use past actual measure-
ments of the modeled variables, other relevant current
measurements and known parameter relationships to
predict the future values of the modeled target variables.
These models typically yielded the best overall accuracy in
our experiments because they use the maximum available
information when compared with other models discussed.
The dissolution rate (= ‘Release’ or ‘R’) was modeled
using the strongest parameters identified during CPP
ranking.

Models 1 and 2, shown below, are empirical linear
models with time shifted using three independent parame-
ters to model dissolution rates after each time point.

Model 3 uses regression tree modeling techniques and
Model 4 is a predictive model. These techniques were
investigated for the modeling of release rates after 30, 45 and
60 min, respectively.

The list of independent parameters for all models
consisted of the following:

Model 1 (empirical): Outside Air Temp, SRA X, Water
Addition

Model 2 (empirical): Outside_Air Dew Point, SRA X,
Water Addition

Model 3 (regression tree): Outside Air Temp, SRA X

Model 4 (predictive): Outside Air Temp, SRA X

Empirical Models

Figure 3 shows the results of empirical model building for
Model 1; similar results were achieved using Model 2. The
moving average of the dissolution rate was calculated, and
the filtered results (dissolution moving average) were then
estimated from all raw material, environmental and process
parameters. The final model consisted of only three
parameters—Outside Air Temp, SRA_ X, Water Addition.

Table 4 Summary of modeling results: comparison of quality of the individual models

Description Correlation coefficient ~ Results within Results within Model relative
one RSD two RSD error
Filtered  ProdRun Filtered Actual  Actual (%) Filtered  Actual
average (%) (%) (%) (%)
Model R30
Moving average = Moving average of ProdRun average 1.000 0.787 100.0 83.9 99.0 0 39
Model 1 Empirical—temperature 0.943 0.749 100.0 79.6 97.6 1.9 4.1
Model 2 Empirical—dew point 0.933 0.748 100.0 80.6 98.1 2.1 4.2
Regression tree—zero order
Model 3a Filtered 0.917 0.688 98.6 81.0 95.3 1.9 44
Regression tree—zero-order raw data
Model 3b Data 0.884 0.781 91.5 83.4 98.1 3.1 4.0
Regression tree—first-order raw data
Model 3¢ Data 0.789 0.670 80.0 72.5 97.1 4.0 4.9
Model 4a Predictive—filtered 0.991 0.732 100.0 80.0 98.6 0.7 43
Model 4b Predictive—raw data 0.943 0.757 97.6 81.0 97.6 1.2 4.2
Model R45
Moving average  Moving average of ProdRun average 1.000 0.779 100.0 77.3 98.6 0 32
Model 1 Empirical—temperature 0.930 0.735 98.6 73.9 96.7 1.8 3.7
Model 2 Empirical—dew point 0.932 0.745 99.5 76.3 97.6 1.5 3.5
Model R60
Moving average = Moving average of ProdRun average 1.000 0.743 100.0 67.3 96.7 0 1.5
Model 1 Empirical—temperature 0.940 0.694 98.6 67.3 91.9 0.7 1.7
Model 2 Empirical—dew point 0.917 0.668 92.9 64.9 91.5 1.1 2.1

@ Springer
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Fig. 3 a Model 1: R30 modeling results per ProdRun. Empirical
model (red), filtered R30 data (blue), polymer property (black) and
ambient temperature (green). b Model 1: R30 measurement (blue) and
modeling error (red dots)

The accuracy of the calculated empirical model versus the
known filtered results as well as the impact of one SRA X
material property and environmental conditions on the
dissolution rate can be seen.

Figure 4 shows the change in temperature and dew point
per production lot during the reporting period. The data
suggest that a seasonal variation is occurring that appears to
coincide with the observed dissolution variation (compare
with Fig. 3). Considering the propensity for this material to
absorb moisture readily, fluctuations in moisture content are
not surprising, with the state of hydration of the polymer
that provides the sustain-releasing action varying accord-

30 1

29 1

Ambient temperature and dew point °C

20

0 50 100 150 200
ProdRun

Fig. 4 Ambient air temperature (red) and dew point (blue), averaged
per ProdRun
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Fig. 5 Sustained-release polymer property averaged per ProdRun

ingly. From these data, it can be seen that temperature and
dew point fluctuate together in unison, and either parameter
can be used for modeling.

Figure 5 shows the change in the polymer material
property throughout the reporting period. The major shift in
this property significantly impacted the dissolution rate of
the product. The data can now be used to develop better,
more representative raw material specifications to ensure a
product with a more consistent dissolution rate.

Figure 6 shows the amount of extra granulating water
that was needed above the standard quantity for certain lots.
Although less obvious in its impact, this is the third most
significant property affecting the release rate of the drug.

10 4

Water added
[$]

50 100 150 200
ProdRun

Fig. 6 Granulation water addition: total (blue), moving average (red).

This chart represents total amount of water added (liters) in addition to

the nominal amount of water per ProdRun
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Fig. 7 a Model 1: actual filtered versus R30 modeled. Chart shows

that all modeled results are within one standard deviation (dotted line)

of the R30 raw data. b Model 1: R30 actual versus R30 modeled.

Chart shows that 80% of modeled results are within one standard

deviation (dotted line) of R30 raw data
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Figures 7 and 8 show the accuracy of the models versus
actual filtered results for dissolution at 30 and 45 min,
respectively. For both time points, 74% or more of the
modeled results are within one standard deviation of the actual
dissolution rate for the raw data. The average relative standard

Q

Release 45 modeled

o

90

80

70

60

Release 45 modeled

50 SRR . . . . . .
50 55 60 65 70 75 80 8 90

Release 45 actual
Fig. 8 a Model 1: R45 actual filtered versus R45 modeled. Chart
shows that 99% of modeled results are within one standard deviation
(dotted line) of R45 raw data. b Model 1: R45 actual versus R45
modeled. Chart shows that 74% of modeled results are within one
standard deviation of R45 raw data

Table 5 Summary of modeling results: model gains for empirical

models 1 and 2

R30 gain R45 gain R60 gain
Model 1
Temperature gain (%/°C) 1.8 2.3 1.6
SRA_X gain (%/°C) 5.9 6.5 3.4
Model 2
Dew point gain (%/°C) 1.8 2.1 1.7
SRA_X gain (%/°C) 5.8 6.5 32

deviation (RSD) is 6.5% for the 30min data and 5.0% for the
45min data. See Tables 4 and 5 for modeling results.

Regression Tree Models
Figure 9 displays the regression modeling results for the 30

min dissolution time point. It can be seen that the results are
more variable than the previous models. Although this

a _ Regression tree model

Q actual (blue)
Q predicted (red)

Time

If <= x1

Q=y3 Q=y4

Fig. 9 a Model 3a: regression tree modeling results. Actual R30
results are shown in blue and model predicted results are shown in
red. b Model 3a: regression tree model
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method is not as accurate (Table 4), it should be appreciated
that even such a simple model can provide valuable
information about the process being modeled.

Predictive Models

Predictive models were the most accurate in predicting the
dissolution rate (Table 4). Models using filtered data
(Fig. 10) and raw data (Fig. 11) provided good results.
The models using filtered data were more accurate (0.99
correlation coefficient, 80% of all model predictions within
one measurement RSD, 98.6% within two RSD) than
models using raw data (0.94 correlation coefficient, 81% of
all model predictions within one measurement RSD, 97.6%
within two RSD).

Correlation to Operations in Other Plants

Confirmation of the adequacy of the models was per-
formed, whereby statistical design of experiment (DOE)
methods were applied to the development and optimization
of the granulation and compressing processes for this
product at a second manufacturing site. Models were built
from these experiments and the models terms and coef-
ficients applied to the data from the current, approved
manufacturing facility. By including the exact additional
terms of the models developed from the optimization work
performed at the second manufacturing site, it was possible
to improve the predictability of dissolution in the currently
approved manufacturing site by ~50% [27].

80 1

70 4

60 -

50 M

30 A

Release 30

20 4

O T T T T
0 50 100 150 200

ProdRun

Fig. 10 Predictive modeling results using filtered dissolution results
at 30min. 100% of modeled results (red line) are within one standard
deviation of R30 filtered data (blue line). Polymer raw material
property fluctuation is shown in black. Temperature changes are
shown in green. Correlation coefficient between modeled and actual
data is high (0.991)
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Fig. 11 Model 4b: predictive modeling results using raw dissolution

data at 30min. Polymer raw material property fluctuation is shown in

black. Temperature changes are shown in green. Correlation coeffi-

cient between modeled and actual data is 0.943

Conclusions

Long-term variations of dissolution rates are caused by
ambient conditions and raw material properties. Mathematical
models of dissolution rates were created. The models show
significant sensitivity of dissolution rates of this drug product
to ambient external conditions and raw material properties.

Several automatic parameter selection and ranking
methods were tested to process the data. These methods
were used for automatic ranking of parameters based on
their respective strength of impact on dissolution rates. The
feature selection methods yielded results consistent with the
current level of process understanding based on engineering
principles. One particularly important property of the raw
material was identified.

Understanding the impact of individual process param-
eter variation on critical product properties such as
dissolution rate will lead to further initiatives focused on:

* Process modeling and prediction of key product
properties;

* Real-time control of key product properties;

*  Process optimization.

This study provides evidence of the value of process
analytical technology (PAT) initiatives focused on the
analysis of historical process data through the quantification
of the impact of individual process and raw material
parameters on key product quality attributes.
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